首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We previously demonstrated that Treponema pallidum TroA is a periplasmic metal-binding protein (MBP) with a distinctive alpha-helical backbone. To better understand the mechanisms of metal binding and release by TroA, we determined the crystal structure of the apoprotein at a resolution of 2.5 A and compared it to that of the Zn(II)-bound form (Protein Data Bank accession code 1toa). apo-TroA shows a conformation even more closed than that of its Zn(II)-bound counterpart due to a 4 degrees tilt of the C-terminal domain (residues 190 through 308) about an axis parallel to the poorly flexible backbone helix. This domain tilting pushes two loops (residues 248 through 253 and 277 through 286) towards the metal-binding site by more than 1 A, resulting in an unfavorable interaction of I251 with D66. To avoid this contact, D66 shifts towards H68, one of the four Zn(II)-coordinating residues. The approach of this negative charge coincides with the flipping of the imidazole side chain of H68, resulting in the formation of a new hydrogen bond. The conformational change of H68, along with a slight rearrangement of D279, a C-terminal domain Zn(II)-coordinating residue, distorts the metal-binding site geometry, presumably causing the release of the bound metal ion. Ligand binding and release by TroA, and presumably by other members of the MBP cluster, differs from the "Venus flytrap" mechanism utilized by bacterial nonmetal solute-binding receptors.  相似文献   

2.
Although TroA (Tromp1) was initially reported to be a Treponema pallidum outer membrane protein with porin-like properties, subsequent studies have suggested that it actually is a periplasmic substrate-binding protein involved in the transport of metals across the treponemal cytoplasmic membrane. Here we conducted additional physicochemical studies to address the divergent viewpoints concerning this protein. Triton X-114 phase partitioning of recombinant TroA constructs with or without a signal sequence corroborated our prior contention that the native protein's amphiphilic behavior is due to its uncleaved leader peptide. Whereas typical porins are trimers with extensive beta-barrel structure, size exclusion chromatography and circular dichroism spectroscopy revealed that TroA was a monomer and predominantly alpha-helical. Neutron activation, atomic absorption spectroscopy, and anomalous X-ray scattering all demonstrated that TroA binds zinc in a 1:1 molar stoichiometric ratio. TroA does not appear to possess structural features consistent with those of bacterial porins.  相似文献   

3.
Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif.  相似文献   

4.
The NMR structure of the 206-residue protein NP_346487.1 was determined with the J-UNIO protocol, which includes extensive automation of the structure determination. With input from three APSY-NMR experiments, UNIO-MATCH automatically yielded 77 % of the backbone assignments, which were interactively validated and extended to 97 %. With an input of the near-complete backbone assignments and three 3D heteronuclear-resolved [1H,1H]-NOESY spectra, automated side chain assignment with UNIO-ATNOS/ASCAN resulted in 77 % of the expected assignments, which was extended interactively to about 90 %. Automated NOE assignment and structure calculation with UNIO-ATNOS/CANDID in combination with CYANA was used for the structure determination of this two-domain protein. The individual domains in the NMR structure coincide closely with the crystal structure, and the NMR studies further imply that the two domains undergo restricted hinge motions relative to each other in solution. NP_346487.1 is so far the largest polypeptide chain to which the J-UNIO structure determination protocol has successfully been applied.  相似文献   

5.
Allosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region. Combining extensive molecular dynamics simulations with a correlation analysis of interresidue contacts, we identify a network of interresidue distances that move in a concerted manner. The cooperative process originates from a cogwheel-like motion of the hydrophobic core in the hinge region, which constitutes an evolutionary conserved and flexible transmission network. Through rigid contacts and the protein backbone, the small local changes of the hydrophobic core are passed on to the distant terminal domains and lead to the emergence of a rare global conformational transition. As in an Ising-type model, the cooperativity of the allosteric transition can be explained via the interaction of local fluctuations.  相似文献   

6.
The Escherichia coli chaperone Hsp33 contains a C-terminal zinc-binding domain that modulates activity by a so-called "redox switch". The oxidized form in the absence of zinc is active, while the reduced form in the presence of zinc is inactive. X-ray crystal structures of Hsp33 invariably omit details of the C-terminal domain, which is truncated in protein constructs that are capable of forming crystals. We report the solution structure of a recombinant 61-residue protein containing the zinc-binding domain (residues 227-287) of Hsp33, in the presence of stoichiometric amounts of Zn2+. The zinc-bound protein is well folded, and forms a novel structure unlike other published zinc-binding domains. The structure consists of two helices at right-angles to each other, a two-stranded B-hairpin and a third helix at the C terminus. The zinc site comprises the side-chains of the conserved cysteine residues 232, 234, 262 and 265, and connects a short sequence before the first helix with the tight turn in the middle of the B-hairpin. The structure of the C-terminal zinc-binding domain suggests a mechanism for the operation of the redox switch: loss of the bound zinc ion disrupts the folded structure, allowing the ligand cysteine residues to be oxidized, probably to disulfide bonds. The observation that the C-terminal domain is poorly structured in the active oxidized form suggests that the loss of zinc and unfolding of the domain precedes the oxidation of the thiolate groups of the cysteine residues, since the formation of disulfides between distant parts of the domain sequence would presumably promote the formation of stable three-dimensional structure in the oxidized form.Hsp33 provides an example of a redox signaling system that utilizes protein folding and unfolding together with chemical modification for transduction of external stimuli, in this case oxidative stress, to activate the machinery of the cell that is designed to deal with that stress.  相似文献   

7.
The SRP1-1 mutation is an allele-specific dominant suppressor of temperature-sensitive mutations in the zinc-binding domain of the A190 subunit of Saccharomyces cerevisiae RNA polymerase I (Pol I). We found that it also suppresses temperature-sensitive mutations in the zinc-binding domain of the Pol I A135 subunit. This domain had been suggested to be in physical proximity to the A190 zinc-binding domain. We have cloned the SRP1 gene and determined its nucleotide sequence. The gene encodes a protein of 542 amino acids consisting of three domains: the central domain, which is composed of eight (degenerate) 42-amino-acid contiguous tandem repeats, and the surrounding N-terminal and C-terminal domains, both of which contain clusters of acidic and basic amino acids and are very hydrophilic. The mutational alteration (P219Q) responsible for the suppression was found to be in the central domain. Using antibody against the SRP1 protein, we have found that SRP1 is mainly localized at the periphery of the nucleus, apparently more concentrated in certain regions, as suggested by a punctate pattern in immunofluorescence microscopy. We suggest that SRP1 is a component of a larger macromolecular complex associated with the nuclear envelope and interacts with Pol I either directly or indirectly through other components in the structure containing SRP1.  相似文献   

8.
Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute binding domain of an ATP binding cassette iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the "C-clamp" structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc-binding protein, ZnuA, where the domains of the metal-binding protein remain relatively fixed, whereas the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible beta-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependence of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions, and both preferentially bind ferrous over ferric ions.  相似文献   

9.
The L-arabinose-binding protein (ABP) of Escherichia coli consists structurally of two distinct globular domains connected by a hinge of three separate peptide segments. Arabinose is bound and completely sequestered within the deep cleft between the two domains. With reduced affinity, ABP also binds D-galactose (approximately 2-fold reduction) and D-fucose (approximately 40-fold reduction). Experiments have been conducted to explore the role in sugar binding of the hinge connecting the two domains of ABP. To increase the flexibility of the hinge region, a glycine was substituted for a proline at position 254 by site-directed mutagenesis. Unexpectedly, this mutation resulted in the dramatic enhancement of galactose binding over that of arabinose. The affinity of the mutant ABP for galactose increased by over 20-fold, while that for arabinose and fucose remained relatively unchanged. We have measured association and dissociation rates of the Gly-254 ABP with L-arabinose, D-galactose, and D-fucose and have determined the crystallographic structure of the protein complexed with each of the three sugars. Both the ligand-binding kinetic measurements and structure analysis indicate that the altered specificity is due to an effective increase in the rigidity of the hinge in the closed conformation which is induced upon galactose binding. Stabilizing contacts are formed between the strands of the hinge in the Gly-254 ABP when galactose is bound which are not found in complexes with the other sugars or the liganded wild-type protein.  相似文献   

10.
Zinc fingers are small structured protein domains that require the coordination of zinc for a stable tertiary fold. Together with FYVE and PHD, the RING domain forms a distinct class of zinc-binding domains, where two zinc ions are ligated in a cross-braced manner, with the first and third pairs of ligands coordinating one zinc ion, while the second and fourth pairs ligate the other zinc ion. To investigate the relationship between the stability and dynamic behaviour of the domains and the stability of the metal-binding site, we studied metal exchange for the C4C4 RING domains of CNOT4 and the p44 subunit of TFIIH. We found that Zn(2+)-Cd(2+) exchange is different between the two metal-binding sites in the C4C4 RING domains of the two proteins. In order to understand the origins of these distinct exchange rates, we studied the backbone dynamics of both domains in the presence of zinc and of cadmium by NMR spectroscopy. The differential stability of the two metal-binding sites in the RING domains, as reflected by the different metal exchange rates, can be explained by a combination of accessibility and an electrostatic ion interaction model. A greater backbone flexibility for the p44 RING domain as compared to CNOT4 may be related to the distinct types of protein-protein interactions in which the two C4C4 RING domains are involved.  相似文献   

11.
Schüler W  Kloiber K  Matt T  Bister K  Konrat R 《Biochemistry》2001,40(32):9596-9604
The solution structure of quail CRP2(LIM2) was significantly improved by using an increased number of NOE constraints obtained from a 13C,15N-labeled protein sample and by applying a recently developed triple-resonance cross-correlated relaxation experiment for the determination of the backbone dihedral angle psi. Additionally, the relative orientation of the 15N(i)-1HN(i) dipole and the 13CO(i) CSA tensor, which is related to both backbone angles phi and psi, was probed by nitrogen-carbonyl multiple-quantum relaxation and used as an additional constraint for the refinement of the local geometry of the metal-coordination sites in CRP2(LIM2). The backbone dynamics of residues located in the folded part of CRP2(LIM2) have been characterized by proton-detected 13C'(i-1)-15N(i) and 15N(i)-1HN(i) multiple-quantum relaxation, respectively. We show that regions having cross-correlated time modulation of backbone isotropic chemical shifts on the millisecond to microsecond time scale correlate with residues that are structurally altered in the mutant protein CRP2(LIM2)R122A (disruption of the CCHC zinc-finger stabilizing side-chain hydrogen bond) and that these residues are part of an extended hydrogen-bonding network connecting the two zinc-binding sites. This indicates the presence of long-range collective motions in the two zinc-binding subdomains. The conformational plasticity of the LIM domain may be of functional relevance for this important protein recognition motif.  相似文献   

12.
13.
BACKGROUND: DNA primases catalyse the synthesis of the short RNA primers that are required for DNA replication by DNA polymerases. Primases comprise three functional domains: a zinc-binding domain that is responsible for template recognition, a polymerase domain, and a domain that interacts with the replicative helicase, DnaB. RESULTS: We present the crystal structure of the zinc-binding domain of DNA primase from Bacillus stearothermophilus, determined at 1.7 A resolution. This is the first high-resolution structural information about any DNA primase. A model is discussed for the interaction of this domain with the single-stranded DNA template. CONCLUSIONS: The structure of the DNA primase zinc-binding domain confirms that the protein belongs to the zinc ribbon subfamily. Structural comparison with other nucleic acid binding proteins suggests that the beta sheet of primase is likely to be the DNA-binding surface, with conserved residues on this surface being involved in the binding and recognition of DNA.  相似文献   

14.
A new group of calcium-regulating proteins, called annexins or Ca++-dependent phospholipid-binding proteins (PLBP), have been detected in different species, organs and cell types. In the present study, we have identified and quantitated PLBP from guinea pig lung, lavage fluid and alveolar type II cells to elucidate the possible role of PLBP in lung surfactant biogenesis and secretion. Lungs were lavaged and type II cells from lavaged lung were isolated by elastase digestion and purified by centrifugal elutriation. For the quantitative identification of PLBP, we performed ELISA assays and Western blot analysis by using an antiserum raised in guinea pigs against a pure rabbit lung 36 kDa PLBP. The lavage fluid, cytosol from lung and type II cells contained 784,167 and 435 ng per mg protein, respectively, of PLBP. The SDS-PAGE electrophoretic pattern and Western blot confirmed that all lung samples have band corresponding to a 36 kDa protein. This indicates that both alveolar type II cells and lavage fluid have higher levels of PLBP than whole lung cytosol.  相似文献   

15.
Liang Y  Ye H  Kang CB  Yoon HS 《Biochemistry》2007,46(41):11550-11558
Nonstructural protein 5A protein (NS5A) of hepatitis C virus (HCV) plays an important role in the regulation of viral replication, interferon resistance, and apoptosis. HCV NS5A comprises three domains. Recently the structure of domain 1 has been determined, revealing a structural scaffold with a novel zinc-binding motif and a disulfide bond. At present, the structures of domains 2 and 3 remain undefined. Domain 2 of HCV NS5A (NS5A-D2) is important for functions of NS5A and involved in molecular interactions with its own NS5B and PKR, a cellular interferon-inducible serine/threonine specific protein kinase. In this study we performed structural analysis of domain 2 by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The analysis of the backbone 1H, 13C, and 15N resonances, 3JHNalpha coupling constants ,and 3D NOE data indicates that NS5A-D2 lacks secondary structural elements and reveals characteristics of unfolded proteins. NMR relaxation parameters confirmed the lack of rigid structure in the domain. The absence of an ordered conformation and the observation of a highly dynamic behavior of NS5A-D2 may provide an underlying molecular basis on its physiological function to allow NS5A-D2 to interact with a variety of biological partners.  相似文献   

16.
Protein motions underlie conformational and entropic contributions to enzyme catalysis; however, relatively little is known about the ways in which this occurs. Studies of the mitogen-activated protein kinase ERK2 (extracellular-regulated protein kinase 2) by hydrogen-exchange mass spectrometry suggest that activation enhances backbone flexibility at the linker between N- and C-terminal domains while altering nucleotide binding mode. Here, we address the hypothesis that enhanced backbone flexibility within the hinge region facilitates kinase activation. We show that hinge mutations enhancing flexibility promote changes in the nucleotide binding mode consistent with domain movement, without requiring phosphorylation. They also lead to the activation of monophosphorylated ERK2, a form that is normally inactive. The hinge mutations bypass the need for pTyr but not pThr, suggesting that Tyr phosphorylation controls hinge motions. In agreement, monophosphorylation of pTyr enhances both hinge flexibility and nucleotide binding mode, measured by hydrogen-exchange mass spectrometry. Our findings demonstrate that regulated protein motions underlie kinase activation. Our working model is that constraints to domain movement in ERK2 are overcome by phosphorylation at pTyr, which increases hinge dynamics to promote the active conformation of the catalytic site.  相似文献   

17.
Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of Thermus thermophilus RRF was determined at 2.6 A resolution. It is a tRNA-like L-shaped molecule consisting of two domains: a long three-helix bundle (domain 1) and a three-layer beta/alpha/beta sandwich (domain 2). Although the individual domain structures are similar to those of Thermotoga maritima RRF (Selmer et al., Science, 1999, 286:2349-2352), the interdomain angle differs by 33 degrees in two molecules, suggesting that the hinge between two domains is potentially flexible and responsive to different conditions of crystal packing. The hinge connects hydrophobic junctions of domains 1 and 2. The structure-based genetic analysis revealed the strong correlation between the hinge flexibility and the in vivo function of RRF. First, altering the hinge flexibility by making alanine or serine substitutions for large-size residues conserved at the hinge loop and nearby in domain 1 frequently gave rise to gain of function except a Pro residue conserved at the hinge loop. Second, the hinge defect resulting from a too relaxed hinge structure can be compensated for by secondary alterations in domain 1 that seem to increase the hydrophobic contact between domain 1 and the hinge loop. These results show that the hinge flexibility is vital for the function of RRF and that the steric interaction between the hinge loop and domains 1 and 2 restricts the interdomain angle and/or the hinge flexibility. These results indicate that RRF possesses an architectural difference from tRNA regardless of a resemblance to tRNA shape: RRF has a "gooseneck" elbow, whereas the tRNA elbow is rigid, and the direction of flex of RRF and tRNA is at a nearly right angle to each other. Moreover, surface electrostatic potentials of the two RRF proteins are dissimilar and do not mimic the surface potential of tRNA or EF-G. These properties will add a new insight into RRF, suggesting that RRF is more than a simple tRNA mimic.  相似文献   

18.
19.
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from the bacterium Pseudomonas aeruginosa is involved in the biosynthesis of several complex carbohydrates, including alginate, lipopolysaccharide, and rhamnolipid. Previous structural studies of this protein have shown that binding of substrates produces a rotation of the C-terminal domain, changing the active site from an open cleft in the apoenzyme into a deep, solvent inaccessible pocket where phosphoryl transfer takes place. We report herein site-directed mutagenesis, kinetic, and structural studies in examining the role of residues in the hinge between domains 3 and 4, as well as residues that participate in enzyme-substrate contacts and help form the multidomain "lid" of the active site. We find that the backbone flexibility of residues in the hinge region (e.g., mutation of proline to glycine/alanine) affects the efficiency of the reaction, decreasing k cat by approximately 10-fold and increasing K m by approximately 2-fold. Moreover, thermodynamic analyses show that these changes are due primarily to entropic effects, consistent with an increase in the flexibility of the polypeptide backbone leading to a decreased probability of forming a catalytically productive active site. These results for the hinge residues contrast with those for mutants in the active site of the enzyme, which have profound effects on enzyme kinetics (10 (2)-10 (3)-fold decrease in k cat/ K m) and also show substantial differences in their thermodynamic parameters relative to those of the wild-type (WT) enzyme. These studies support the concept that polypeptide flexibility in protein hinges may evolve to optimize and tune reaction rates.  相似文献   

20.
The structure and fluctuations of the enzyme S-adenosyl-L-homocysteine hydrolase (SAHH) are analyzed in an effort to explain its biological function. Besides the previously identified open structure, characteristic of the substrate-free enzyme, we find two distinct structures in enzyme-inhibitor complexes, the closed and closed-twisted conformers. Both closed conformers differ from the open form by a hinge bending motion of two large domains within each subunit, which isolate the inhibitor bound in the active site from the bulk solvent. The closed-twisted form further differs from the closed form by a rigid body twist of the two-subunit dimers. The local structural fluctuations of SAHH are analyzed by performing block normal mode analysis of the tetrameric enzyme in its three forms. For the open form, we find that the four lowest-frequency normal modes, corresponding to the collective motions of the protein with the largest amplitudes, are essentially combinations of the hinge bending deformations of the individual subunits. Thus, the mechanical properties of the open structure of SAHH lead to the presence of structural fluctuations in the direction of the open-to-closed conformational transition. A candidate for such a motion has been observed in previous fluorescence depolarization studies of the enzyme. Both structural and normal mode analyses indicate that residues 180-190 and 350-356 form hinge regions, connecting large domains which tend to move as rigid bodies in response to interactions with substrate, intermediates, and the product of the enzymatic reactions. We propose that these hinge regions play a crucial role in the enzymatic mechanism of SAHH. In contrast to the open form, normal mode calculations for the closed conformations show strong coupling of the hinge bending motions of the individual subunits to each other and to other low-frequency vibrations. Thus, information about structural changes related to reaction progress in one active site may be mechanically transmitted to other subunits of the protein, explaining the cooperativity found in the enzyme kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号