首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Several organs, such as the heart, breasts, intestine, testes, and ovaries, have been reported to be target tissues of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To date, no studies have demonstrated SARS-CoV-2 infection in the female reproductive system. In the present study, we investigated the effects of SARS-CoV-2 infection on ovarian function by comparing follicular fluid (FF) from control and recovered coronavirus disease 2019 (COVID-19) patients and by evaluating the influence of these FF on human endothelial and non-luteinized granulosa cell cultures. Our results showed that most FFs (91.3%) from screened post COVID-19 patients were positive for IgG antibodies against SARS-CoV-2. Additionally, patients with higher levels of IgG against SARS-CoV-2 had lower numbers of retrieved oocytes. While VEGF and IL-1β were significantly lower in post COVID-19 FF, IL-10 did not differ from that in control FF. Moreover, in COV434 cells stimulated with FF from post COVID-19 patients, steroidogenic acute regulatory protein (StAR), estrogen-receptor β (Erβ), and vascular endothelial growth factor (VEGF) expression were significantly decreased, whereas estrogen-receptor α (ERα) and 3β-hydroxysteroid dehydrogenase (3β-HSD) did not change. In endothelial cells stimulated with post COVID-19 FF, we observed a decrease in cell migration without changes in protein expression of certain angiogenic factors. Both cell types showed a significantly higher γH2AX expression when exposed to post COVID-19 FF. In conclusion, our results describe for the first time that the SARS-CoV-2 infection adversely affects the follicular microenvironment, thus dysregulating ovarian function.  相似文献   

4.
5.
6.
Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by ~20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.  相似文献   

7.
8.
Deep-sea sediments cover ∼70% of Earth''s surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of 13C-labelled diatoms and faecal pellets to a cold water (−0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth.  相似文献   

9.
The granulosa cell produces an inhibitor of aromatase activity, which recently was purified to homogeneity (follicle-regulatory protein: FRP). Since extracts of testicular homogenates also contain factor(s) with biological properties similar to FRP, including inhibition of granulosa cell aromatase, we examined the effects of ovarian FRP on testicular function. Forty-five-day-old rats received daily FRP injections (100 micrograms or 300 micrograms). After 15, 30, 45, and 70 days of therapy, (n = 5 each group), trunk serum was measured for testosterone, androstenedione, estradiol, and FSH levels by established radioimmunoassays (RIA). One testis from each rat was homogenized, centrifuged, and evaluated for sperm head counts; the other testis was dissected by transillumination, and the length of seminiferous epithelial stages determined. After 15 (control: 4.8 +/- 0.2 mm; 100 micrograms: 6.0 +/- 0.3 mm; 300 micrograms: 6.6 +/- 0.3 mm) and 30 days (control: 4.6 +/- 0.2 mm; 100 micrograms: 6.3 +/- 0.2 mm; 300 micrograms: 5.9 +/- 0.2 mm) of treatment the length of the "strong" seminiferous tubule segment in FRP-treated rats was greater than in control rats (p less than 0.05). Serum levels of steroids and FSH were similar in all groups. After 30, 45, and 70 days of treatment, the sperm head counts for the 100-micrograms and 300-micrograms dosages were 26%, 29%, 30% and 20%, 34%, and 24% of control values, respectively. By 70 days of treatment, cycle Stage VII was markedly reduced or absent in FRP-treated rats, and their round spermatids contained ring chromatin; both conditions indicate degeneration. FRP (50 micrograms/ml) was added to rat Sertoli cell cultures for 4 days after which transferrin and androgen-binding protein (ABP) were measured. FRP enhanced Sertoli cell secretion of ABP (58 vs. 138 +/- 7 microliters eq/culture) and transferrin (2.1 vs. 4.7 +/- 0.6 microgram/culture). In conclusion, systemic injection of FRP alters seminiferous epithelial function by reducing maturation of mature sperm forms. Adding FRP to Sertoli cells in culture enhances secretion of transferrin and ABP; this suggests that maturation of the germinal elements may be linked to the secretory function of seminiferous tubules.  相似文献   

10.
11.
D A Walsh  V B Morris 《Teratology》1989,40(6):583-592
The effects of heat shock on cell cycling in the mammalian neuroectoderm were determined by applying heat shocks to cultured rat embryos at the neural plate stage, as part of a study on the teratogenic effects of heat shock on neural development. The heat shocks had been characterized previously (Walsh et al.: Teratology 36:181-191, 1987) with respect to their effects on the gross morphological development of the rat embryos. The effects on cell cycling were observed in DNA histograms of neural plate cells recorded in a flow cytometer after staining with DAPI. The mild heat shock (42 degrees C for 10 min) arrested cells at entry to S phase. The teratogenic heat shock (43 degrees C for 7.5 min) arrested cells at entry to S phase also but for a longer time and inhibited cycling through S phase. After each arrest, a synchronized peak of cells later entered S phase and progressed through the cycle. The induced-thermotolerance heat shock, which was the mild heat shock followed after an interval by the teratogenic heat shock, showed that pre-treatment with the mild heat shock reduced the magnitude of the response to the teratogenic heat shock. The cell-cycle inhibitor ICRF 159 showed the effects on cycling rates of the heat-shock treatments. The arrest of cells at entry to S phase by heat shock may function to prevent cells entering DNA synthesis under non-optimal conditions. We report estimates of proportions of non-proliferative cells in the neural plate of the rat embryos.  相似文献   

12.
Loss in microbial diversity affects nitrogen cycling in soil   总被引:3,自引:0,他引:3  
Microbial communities have a central role in ecosystem processes by driving the Earth''s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.  相似文献   

13.
Hyperprolactinemia has been associated with several reproductive disorders. To investigate whether hyperprolactinemia directly affects rat ovarian function, we examined the ovarian histopathology and the activities of the four ovarian enzymes 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), 17-hydroxylase (17-OH), 17,20-desmolase (17,20-D) and aromatase in hyperprolactinemic rats and controls. Hypophysectomized, gonadotropin-treated Fisher rats were made hyperprolactinemic by isografting pituitary glands under the kidney capsule. The control animals received skeletal muscle. The ovaries were resected, pooled according to prolactin levels and microsomal enzyme activities were measured from each pool. Prolactin (PRL) levels were 344 +/- 23 ng/ml in the hyperprolactinemic rats and 18 +/- 5 ng/ml in the controls (p less than 0.001). Estradiol concentrations were 609 +/- 47 pg/ml in the hyperprolactinemic animals and 56 +/- 13 pg/ml in the controls (p less than 0.001). Ovarian and uterine weights were significantly higher in the hyperprolactinemic rats (p less than 0.02). Ovarian histopathology demonstrated benign polycystic transformation in the hyperprolactinemic animals. Hyperprolactinemia had no effect on 3 beta-HSD, but was associated with significant decreases in the 17-OH, 17,20-D and aromatase activities when compared to controls (p less than 0.001). We conclude that prolactin has a direct effect on rat ovarian function which appears to be independent of changes in gonadotropin secretion.  相似文献   

14.
Hyperproliferation of synovial fibroblasts is considered to be a pivotal event in the pathogenesis of rheumatoid arthritis (RA). Luteolin, a flavonoid, inhibits the proliferation of synovial fibroblasts in collagen-induced arthritic rats. Treatment with luteolin also decreases the secretion of matrix metalloprotease-1 and -3 and the expression of IL-6, IL-8, IL-15, and TGF-β. Luteolin treatment caused a delay of cells in the G2/M phase. Interestingly, combination treatment with luteolin and TNF-α exhibited a synergistic inhibitory effect in all experiments. Western blotting demonstrated that treatment with luteolin alone or combined with TNF-α inhibited the MAPK/ERKs and PI3K-Akt pathways. These results indicate that luteolin inhibits the proliferation and partially blocks the pathogenic function of synovial fibroblasts in rheumatoid arthritis.  相似文献   

15.
16.
Adipose tissue lipolysis and fatty acid reesterification by liver and adipose tissue were investigated in rats fasted for 15 h under basal and calorigenic conditions. The fatty acid flux initiated by adipose fat lipolysis in the fasted rat is mostly futile and is characterized by reesterification of 57% of lipolyzed free fatty acid (FFA) back into adipose triglycerides (TG). About two-thirds of FFA reesterification are carried out before FFA release into plasma, whereas the rest consists of plasma FFA extracted by adipose tissue. Thirty-six percent of the fasting lipolytic flux is accounted for by oxidation of plasma FFA, whereas only a minor fraction is channeled into hepatic very low density lipoprotein-triglycerides (VLDL-TG). Total body calorigenesis induced by thyroid hormone treatment and liver-specific calorigenesis induced by treatment with beta, beta'-tetramethylhexadecanedioic acid (Medica 16) are characterized by a 1.7- and 1.3-fold increase in FFA oxidation, respectively, maintained by a 1.5-fold increase in adipose fat lipolysis. Hepatic reesterification of plasma FFA into VLDL-TG is negligible under both calorigenic conditions. Hence, total body fatty acid metabolism is regulated by adipose tissue as both source and sink. The futile nature of fatty acid cycling allows for its fine tuning in response to metabolic demands.  相似文献   

17.
18.
The quantitative nitroblue-tetrazolium test demonstrated that polymorphonuclear leucocytes from patients with hypothyroidism reduced the dye less well than leucocytes from euthyroid persons. The ability of these cells to ingest and kill staphylococci were unimpaired. The abnormality of the nitroblue-tetrazolium test in hypothyroid patients was corrected after their treatment with thyroxine.  相似文献   

19.
Na(+)-dependent L-Alanine and Glycine uptake by rat red blood cells were best fit to a common model of two transport components, saturable transport and diffusion. 24 hours of food deprivation provoked statistically significant increases of the Km and Vmax red cells L-Alanine uptake, whereas the diffusion constant did not change in response to starvation. The Glycine uptake kinetics poorly follows the L-Alanine pattern and no significant response to starvation can be outlined. The physiological meaning of these adaptations has to be related to short term food deprivation regulation, independent of protein synthesis in the erythrocytes. Such mechanisms could be important to account for the previously described changes in the distribution patterns of amino acids between the blood plasma and blood cell compartments in response to short term starvation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号