首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The global ecological impacts of introduced and exotic species can be dramatic, leading to losses in biodiversity and ecosystem “meltdown”, however, the evolutionary impacts of introduced species are much less understood. Further, very few studies have examined whether mammalian herbivores can act as agents of natural selection for plant traits. We examined the hypothesis that variation in aspen phytochemistry resulted in selective herbivory by Cervus elaphus (elk), an introduced mammalian herbivore. With the experimental removal of a large elk exclosure, elk selectively eliminated 60% of an aspen population previously protected from herbivory resulting in a dramatic shift in the phytochemical composition of the aspen forest. Selection gradients (β) varied from 0.52 to 0.66, well above average relative to other studies of selection. These results indicate that introduced herbivores can have rapid evolutionary consequences even on long lived native species. Because there are fundamental links between phytochemistry, biodiversity and ecosystem processes, the effects of an introduced herbivore are likely to have cascading impacts on the services ecosystems provide.  相似文献   

2.
Lau JA 《Oecologia》2012,170(1):171-181
Just as ecological indirect effects can have a wide range of consequences for community structure and ecosystem function, theory suggests that evolutionary indirect effects can also influence community dynamics and the outcome of species interactions. There is little empirical evidence documenting such effects, however. Here, I use a multi-generation selection experiment in the field to investigate: (1) how the exotic plant Medicago polymorpha and the exotic insect herbivore Hypera brunneipennis affect the evolution of anti-herbivore resistance traits in the native plant Lotus wrangelianus and (2) how observed Lotus evolutionary responses to Hypera alter interactions between Lotus and other members of the herbivore community. In one of two study populations, I document rapid evolutionary changes in Lotus resistance to Hypera in response to insecticide treatments that experimentally reduced Hypera abundance, and in response to Medicago-removal treatments that also reduced Hypera abundance. These evolutionary changes in response to Hypera result in reduced attack by aphids. Thus, an evolutionary change caused by one herbivore species alters interactions with other herbivore taxa, an example of an eco-evolutionary feedback. Given that many traits mediate interactions with multiple species, the effects of evolutionary changes in response to one key biotic selective agent may often cascade through interaction webs to influence additional community members.  相似文献   

3.
Herbivores modify various ecological processes including interactions between native and exotic plants that may affect invasion success by the exotic plants. It is unknown whether different types of exotic herbivores have similar effects on native and exotic plants. Using two distinct data sets, we ran meta-analyses to compare exotic vertebrate and invertebrate herbivore preferences for, and effects on performance and population sizes of native and exotic plants. We found that exotic vertebrate herbivores have positive effects on exotic plant performance and population sizes, and no significant effects on native plants. Exotic invertebrates have significant negative effects on performance and population sizes of both exotic and native plants. Vertebrates prefer to feed on native plants relative to exotic plants, while invertebrates prefer the exotic plants to native plants. Thus the exotic vertebrate herbivores may aid invasiveness of exotic plants, in accordance with the invasional meltdown hypothesis, while exotic invertebrate herbivores probably have no net effect on invasion process of the exotic plants. Invertebrate herbivore preferences for exotic plants support the biotic resistance hypothesis, as the native plants probably resist the invertebrate herbivory. We also tested an evolutionary logic that posits that herbivores with similar evolutionary history as plants will affect the plants less negatively than plants with which they have not co-evolved. Our results indicate that there is no consistent pattern in effects of exotic vertebrate and invertebrate herbivores on exotic plants with or without which they have co-evolved.  相似文献   

4.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

5.
Two venerable hypotheses, widely cited as explanations for either the success or failure of introduced species in recipient communities, are the natural enemies hypothesis and the biotic resistance hypothesis. The natural enemies hypothesis posits that introduced organisms spread rapidly because they are liberated from their co‐evolved predators, pathogens and herbivores. The biotic resistance hypothesis asserts that introduced species often fail to invade communities because strong biotic interactions with native species hinder their establishment and spread. We reviewed the evidence for both of these hypotheses as they relate to the importance of non‐domesticated herbivores in affecting the success or failure of plant invasion.
To evaluate the natural enemies hypothesis, one must determine how commonly native herbivores have population‐level impacts on native plants. If native herbivores seldom limit native plant abundance, then there is little reason to think that introduced plants benefit from escape from these enemies. Studies of native herbivore‐native plant interactions reveal that plant life‐history greatly mediates the strength with which specialist herbivores suppress plant abundance. Relatively short‐lived plants that rely on current seed production for regeneration are most vulnerable to herbivory that reduces seed production. As such, these plants may gain the greatest advantage from escaping their specialist enemies in recipient communities. In contrast, native plants that are long lived or that possess long‐lived seedbanks may not be kept “in check” by native herbivores. For these species, escape from native enemies may have little to do with their success as exotics; they are abundant both where they are native and introduced.
Evidence for native herbivores providing biotic resistance to invasion by exotics is conflicting. Our review reveals that: 1) introduced plants can attract a diverse assemblage of native herbivores and that 2) native herbivores can reduce introduced plant growth, seed set and survival. However, the generality of these impacts is unclear, and evidence that herbivory actually limits or reduces introduced plant spread is scarce. The degree to which native herbivores provide biotic resistance to either exotic plant establishment or spread may be greatly determined by their functional and numerical responses to exotic plants, which we know little about. Generalist herbivores, through their direct effects on seed dispersal and their indirect effects in altering the outcome of native–non‐native plant competitive interactions, may have more of a facilitative than negative effect on exotic plant abundance.  相似文献   

6.
Both theoretical and empirical works have highlighted the difference in the evolutionary implications of host resistance and tolerance against their enemies. However, it has been difficult to show evolutionary changes in host defences in natural populations; thus, evaluating theoretical predictions of simultaneous evolution of defences remains a challenge. We studied the evolutionary changes in traits related to resistance and tolerance against herbivory in a natural plant population using seeds from two collections made in a period of 20 years. In a common garden experiment, we compared defensive traits of ancestral (1987) and descendant (2007) subpopulations of the annual plant Datura stramonium that shows genetic variation for tolerance and to which the specialist herbivore Lema daturaphila is locally adapted. We also examined the effects of different plant genotypes on the herbivore for testing the plant genetic variation in resistance. Based on the response to the contemporary herbivore populations, results revealed a nonsignificant response in plant resistance traits (herbivore consumption, foliar trichomes and tropane alkaloids), but a significant one in tolerance. The survival of herbivores in laboratory experiments depended on the plant genotype, which suggests genetic variation in plant resistance. Although we cannot identify the selective agent for the change nor exclude genetic drift, the results are consistent with the expectation that when resistance fails to control herbivory, tolerance should play a more important role in the evolution of the interaction.  相似文献   

7.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

8.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

9.
Tolerance and resistance are defence strategies evolved by plants to cope with damage due to herbivores. The introduction of exotic species to a new biogeographical range may alter the plant–herbivore interactions and induce selection pressures for new plant defence strategies with a modified resource allocation. To detect evolution in tolerance to herbivory in common ragweed, we compared 3 native (North America) and 3 introduced (France) populations, grown in a common garden environment. We explored the effect of leaf herbivory on plant vegetative and reproductive traits. Plants were defoliated by hand, simulating different degrees of insect grazing by removing 0%, 50% or 90% of each leaf blade. Total and shoot dry biomasses were not affected by increasing defoliation, whereas root dry biomass and root:shoot ratio decreased significantly for native and introduced populations. Furthermore, defoliation treatments did not affect any of the plant reproductive traits measured. Hence, common ragweed displayed an efficient reallocation of resources in shoot biomass at the expense of roots following defoliation, which allows the species to tolerate herbivory without obvious costs for fitness. We did not detect any difference in herbivory tolerance between introduced and native populations, but significant differences were found in reproduction with invasive populations producing more seeds than native populations. As a result, tolerance to herbivory has been maintained in the introduced plant populations. We discuss some implications of these preliminary results for biological control strategies dedicated to common ragweed.  相似文献   

10.
We present evidence that populations of an invasive plant species that have become re‐associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half‐sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol‐exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long‐term efficacy of biocontrol programmes.  相似文献   

11.
The novel associations between invasive plants and their natural enemies in the introduced range have recently received increasing attention; however, the effects of novel enemies on exotic plant performance and competition with native species remain poorly explored. Here, we tested the impact of herbivory by a native beetle, Cassida piperata, on the performance of the exotic species Alternanthera philoxeroides and competition with a native congener, Alternanthera sessilis, using common garden experiments in central China. We found A. philoxeroides was able to fully compensate for intense herbivory by C. piperata. Herbivory by C. piperata that released at the average density in this region had no impact on competition between the native and exotic plant species. Our results indicate that herbivory by novel enemies may not reduce exotic plant performance due to plant compensation. However, high tolerance to herbivory may not confer a competitive advantage for exotic species compared to less tolerant native competitors if the herbivore damage is below a certain threshold. Thus, it is necessary to assess the impact of novel enemies on exotic plant performance and competition with native plants along gradients of insect densities. This may lead to a better understanding of how best to exploit the role of native herbivores in facilitating or slowing plant invasions.  相似文献   

12.
Exotic herbivores represent a serious threat to native biodiversity, producing large scale changes in native communities and altering ecosystem processes. In this special issue, we present a series of case studies and reviews from different areas of the world that highlight (1) the consequences of herbivore introductions are a global problem; (2) they can result in wholesale shifts in the distribution of dominant plants on the landscape and; (3) the effects of herbivore introductions extend from the population to the community and ecosystem level. These studies suggest that introduced herbivores often retard ecosystem recovery after disturbance, facilitate invasion of plant species and can act as selective agents on native plant communities. These studies also suggest that several topics, including facilitation between exotic herbivores and exotic plants and animals (i.e., invasional meltdown) and the effect of exotic herbivores on ecosystem processes, require more research attention. Overall the papers in this special feature suggest that introduced herbivores are a global problem with wide-ranging ecological and evolutionary effects.  相似文献   

13.
1. All else being equal, the greater the local species richness of plants, the greater the number of associated herbivore species. Because most herbivore insects feed on a subset of closely related plant species, plant phylogenetic diversity is expected to play a key role in determining the number of herbivore species. What is not well known, however, is how an increase in the species richness of exotic plants affects the species richness of herbivores. 2. In this study, we used plant–fruit fly interactions to investigate the influence of the proportion and species richness of exotic host plants on the species richness of herbivorous insects. We also tested whether the phylogenetic diversity of host plants increases when the number of exotic plant species increases. 3. We found that the species richness of fruit flies is more accurately predicted by the richness of native host plants than by total plant species richness (including both native and exotic species). The proportion of exotic host species and the phylogenetic diversity of host plants had negative and positive effects, respectively, on the species richness of fruit flies. 4. Our findings suggest that a positive effect of plant richness on herbivore richness occurs only when an increase in plant diversity involves plant species with which native herbivores share some evolutionary history.  相似文献   

14.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

15.
The indirect effects of native generalist insect herbivores on interactions between exotic and native grassland plants have received limited attention. Crested wheatgrass ( Agropyron cristatum ) is the most common exotic rangeland grass in western North America. Crested wheatgrass communities are resistant to colonization by native plant species and have strong competitive effects on native species, imposing problems for the restoration of native grasslands. Grasshoppers are generalist herbivores that are often abundant in Crested wheatgrass–dominated sites in the northern Great Plains. We conducted two experiments in a Crested wheatgrass–dominated grassland in western North Dakota to test the hypothesis that grasshopper herbivory influences local Crested wheatgrass community composition by impeding native seedlings. Grasshopper herbivory negatively affected the species richness, abundance, and Shannon diversity of native plants in 3 of 4 years. Although additional research is needed to determine if grasshoppers actively select native plants, the effects of grasshopper herbivory may be an important consideration in the restoration of Crested wheatgrass areas. Our findings illustrate the importance of understanding the impact of native generalist invertebrate herbivores on the relationships between exotic and native plants.  相似文献   

16.
Rapid post-introduction evolution has been found in many invasive plant species, and includes changes in defence (resistance and tolerance) and competitive ability traits. Here, we explored the post-introduction evolution of a trade-off between resistance to and tolerance of herbivory, which has received little attention. In a common garden experiment in a native range, nine invasive and 16 native populations of Brassica nigra were compared for growth and defence traits. Invasive populations had higher resistance to, but lower tolerance of, herbivore damage than native populations. Invasive populations survived better and produced more seeds than native ones when released from herbivores; but fitness was equivalent between the regions under ambient herbivory. The invasive populations grew taller, and produced more biomass and lighter seeds than natives, irrespective of insecticide treatment. In addition to supporting the idea of post-introduction rapid evolution of plant traits, our results also contribute to an emerging pattern of both increasing resistance and growth in invasive populations, contrary to the predictions of earlier theories of resistance-growth trade-offs.  相似文献   

17.
The consequences of invasive species on ecosystem processes and ecological interactions remain poorly understood. Predator–prey interactions are fundamental in shaping species evolution and community structure and can be strongly modified by species introductions. To fully understand the ecological effects of invasive species on trophic linkages it is important to characterize novel interactions between native predators and exotic prey and to identify the impacts of invasive species on the performance of native predators. Although seaweed invasions are a growing global concern, our understanding of invasive algae—herbivore interactions is still very limited. We used a series of feeding experiments between a native herbivore and four invasive algae in the Mediterranean Sea to examine the potential of native sea urchins to consume invasive seaweeds and the impacts of invasive seaweed on herbivore performance. We found that three of the four invasive species examined are avoided by native herbivores, and that feeding behaviour in sea urchins is not driven by plant nutritional quality. On the other hand, Caulerpa racemosa is readily consumed by sea urchins, but may escape enemy control by reducing their performance. Recognizing the negative impacts of C. racemosa on herbivore performance has highlighted an enemy escape mechanism that contributes to explaining how this widespread invasive alga, which is preferred and consumed by herbivores, is not eradicated by grazing in the field. Furthermore, given the ecological and economic importance of sea urchins, negative impacts of invasive seaweeds on their performance could have dramatic effects on ecosystem function and services, and should be accounted for in sea urchin population management strategies.  相似文献   

18.
In their native range, mammalian herbivores exist in a suite of direct and indirect ecological and evolutionary relationships with plant populations and communities. Outside their native range these herbivores become embedded in a multitude of new ecological and evolutionary interactions with native plant species in the new range. Sound knowledge of the plant/herbivore interactions in the herbivores’ native range provides an ideal framework to better understand their effects in the introduced range. The example of the common brushtail possum (Trichosurus vulpecula) and its introduction to New Zealand from Australia provides an excellent case study. In Australia, the common brushtail possum is a widespread generalist herbivore and it is thought that this generalist lifestyle has equipped the species well for successful colonisation of New Zealand. In Australia the brushtail possum has co-existed with highly chemically defended foliage since the Oligocene and recent papers have supported the role of possums as agents of selection on eucalypt defences. While the chemical profile of New Zealand foliage is comparatively poorly understood, possums do show clear selectivity between and within populations and some of these interactions may be mediated by the animals ability to ‘cope’ with PSMs, coupled with maintaining its generalist diet. While possums have had less time to effect evolutionary change in New Zealand species, their impacts on plant fitness have been well documented. However, further knowledge on variation and heritability of foliage traits driving possum preferences is needed to elucidate the ecological and evolutionary plant/possum interactions in the invasive range.  相似文献   

19.
Quantitative genetically based traits in dominant and keystone tree species can have extended effects on other biota and also on ecosystem processes. This has direct implications for managed plant systems, where choice of genetic stock in conservation or commercial plantings will affect the ecological and evolutionary trajectory of the associated biotic communities. Hence an understanding of genetic variation in quantitative traits, especially those that relate directly to fitness, should be incorporated into the management of species. In plants, quantitative traits such as foliar defences that mediate the complexity of biotic interactions (e.g. herbivory), may be key fitness traits to consider in the management of gene pools of species that are of high conservation value. In this paper we examine the interactions of an endangered eucalypt species, Eucalyptus morrisbyi and a marsupial herbivore, the common brushtail possum Trichosurus vulpecula. We investigate the genetic variability of resistance of plants sourced from two populations and genetic variability in foliage defences as key quantitative traits that may be essential for survival of this eucalypt species. Trichosurus vulpecula detect clear genetic divergence in the two E. morrisbyi populations as evidenced by their browsing preferences in the field. In addition, trees from the more susceptible population (Calverts Hill) suffered fitness consequences with lower flowering than trees from the more resistant population (Risdon Hills). Field feeding preferences were confirmed in captive feeding trials arguing differences were due to foliar attributes consistent with the genetic‐based differences observed in key chemical and physical foliage traits. Biotic interactions such as herbivory may affect populations of rare plant species. Results of this study highlight the need to understand the degree of genetic differentiation of resistance to herbivores and in the quantitative traits mediating these interactions in species of high conservation value, as these traits affect the adaptive potential of populations.  相似文献   

20.
Plants are subjected to environmental gradients and may encounter various herbivores, leading to geographic variation in defensive traits. The present review highlights that biological invasions are remarkable natural experiments for studying geographic variation in plant–herbivore interaction and tracking temporal dynamics in plant defense in response to environmental changes. Studies from this viewpoint can challenge various general topics in plant ecology, including the evolution of plant defense and indirect interactions among plants. First, I provide a brief overview on how the introduction of exotic herbivores drives rapid evolution after the establishment of exotic plants and its impacts on native plants. Second, I present a series of case studies investigating the patterns and mechanisms of geographic variation in the interaction between Solidago altissima and Corythucha marmorata (lace bug) in the native range in the United States and the introduced range in Japan. By combining biogeographical and experimental approaches, my collaborators and I unraveled the temporal dynamics of S. altissima's resistance to lace bugs and explored the drivers of differentiation in resistance between native and introduced ranges. These studies provide new insight into the geographic variation in exotic plant–herbivore interaction by unraveling the mechanisms and the temporal scale that cause the variation. These findings are vital not only for predicting invasiveness of exotic plants but also for understanding the evolution of plant–herbivore interaction in community contexts and under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号