首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Using quantitative morphological analysis of light microscopy data, the normal variation of trichome morphogenesis is studied in six whitlow grass species (Draba L.) and the morphological variation of adult trichomes in 11 species. The evolution consists in the transition from a radial morphogenesis pattern to bilateral and replacement of complex (branched) trichome rays with simple (unbranched) rays. A parametric system is constructed for classification of the ray morphology; this system includes two parameters—the ratio of the numbers of complex to simple rays, characterizing the probability of secondary branching of primary buds, and the number of primary buds, characterizing the probability of primary branching on the surface of the trichome cell. In this parametric space, all of the studied species fit well a third-order curve consisting of two ascending branches displaying a positive correlation between the primary and secondary branchings and a descending branch, located between them, where the primary and secondary branches are negatively correlated. The deduced evolutionary direction is almost independent of the size of the trichome cells and is explained exclusively by the mechanics of morphogenesis: acceleration in the development of the primary bud of the ray decreases the probability of its own branching and creates additional elastic extension of the cell surface, preventing other buds from branching. The morphogenesis itself appears to be a mechanically nonholonomic system, filtering in a selective manner the fluctuations of the same sign, which explains the directed pattern of its evolution. In the evolutionarily initial state, trichome ontogenesis is absent because its modules (primary buds) are formed by a mirror duplication. The ontogenesis commences when mirror symmetry in the formation of modules is lost and replaced with an axial pattern; thus, the change in the morphological type of buds is a direct consequence of the emergence of ontogenesis and its further evolution. Its main material is intraindividual variation, the only source of which is the mechanics of morphogenesis itself. It is found that morphological evolution can take place at an initially zero heritability and zero adaptive value of morphological differences.  相似文献   

2.
The micro‐morphology of nutlets in 30 taxa (28 species and 2 varieties) of Microula Benth. (Boraginaceae) was surveyed by light and scanning electron microscopy. A principal coordinate‐based ordination analysis (PCO) (8 morphological and 14 micro‐morphological characters) was applied to explore whether taxa clustered according to the current sectional taxonomy. The nutlet epidermis showed three major features: trichomes, papillae and lamellae. Two basic trichome types could be identified: branched and unbranched. Stellate trichomes (STT) and stipitate stellate trichomes (SST) can be considered as two subtypes of branched trichomes based on shape and branching location. Three kinds of unbranched trichomes were recognized by their shapes: slender trichomes (SLT), spear‐like trichomes (SPT) and conical trichomes (CT). Four types of papillae were revealed in this genus: central apiculate papillae (CAP), debris‐covered convex papillae (DCP), rugous papillae (RP) and tabular papillae (TP). The lamellae was classified in five types: glossy lamellae (GL), thread‐like lamellae (TL), rugous lamellae (RL), interrupted lamellae (IL) and debris‐covered lamellae (DCL). The variation in the nature of surface sculpturing, nutlet shape and size, dorsal aperture shape, and attachment scar positions proved useful diagnostic characters. Taxa belonging to the same section generally clustered together in the PCO analysis. A key based on the morphology and micro‐morphology of nutlets is provided to distinguish the sections of Microula. The presence of SLT, STT, DCP and DCL is consistent with the macro‐morphological classification and provides additional evidence for the subgeneric delimitations. The SST, SLT, CAP, DCP, RP, DCL, GL and RL are useful in discriminating species in Microula. Additionally, the distribution of some trichomes, papillae and lamellae types is correlated with the altitudinal distribution of the species.  相似文献   

3.
The foliar indumentum of 94 taxa of Rubus has been surveyed by scanning electron microscopy. The analysed species belonged to five subgenera. Rubus subgen. Rubus with its three sections and 21 series was the most numerously represented. In all studied species, indumentum was present, but the species differed more or less from each other with respect to the density of the indumentum on the abaxial leaf surface. Three main hair types were present: simple eglandular (unbranched) trichomes, branched eglandular trichomes, and very short secretory uni‐seriate trichomes; subtypes were distinguished according to trichome size. Apart from investigating separate traits, we described character patterns for the best represented and homogeneous series: Discolores, Subthyrsoidei, Rhamnifolii and Rubus. Other large groups (Sylvatici, Glandulosi and Micantes) were more diverse.  相似文献   

4.
Arabidopsis trichomes are large unicellular structures that develop on the surface of most shoot-derived organs. In leaves, the number, spacing and shape of trichomes is tightly regulated, and this process has been used as an experimental system to study the control of cell fate and pattern formation. The control of trichome initiation is complex: both the potential of a cell to adopt the trichome cell fate and an intricate signaling pathway determine the pattern of trichome initiation events. Several important new results suggest that trichome initiation and morphogenesis are redundantly regulated by both positive and negative factors. A testable model for the control of trichome initiation is presented.  相似文献   

5.
Trichome micromorphology of leaves and young stems of nine taxa (including four varieties) of Colquhounia were examined using light and scanning microscopy. Two basic types of trichomes were recognized: eglandular and glandular. Eglandular trichomes are subdivided into simple and branched trichomes. Based on the number of cells and trichome configuration, simple eglandular trichomes are further divided into four forms: unicellular, two-celled, three-celled and more than three-celled trichomes. Based on branching configuration, the branched eglandular trichomes can be separated into three forms: biramous, stellate and dendroid. Glandular trichomes can be divided into two subtypes: capitate and peltate glandular trichomes. Results from this study of morphological diversity of trichomes within Colquhounia lend insight into infrageneric classification and species relationships. Based on the presence of branched trichomes in C. elegans, this species should be transferred from Colquhounia sect. Simplicipili to sect. Colquhounia. We provide a taxonomic key to species of Chinese Colquhounia based on trichome morphology and other important morphological traits.  相似文献   

6.
Arabidopsis thaliana trichomes provide an attractive model system to dissect molecular processes involved in the generation of shape and form in single cell morphogenesis in plants. We have used transgenic Arabidopsis plants carrying a GFP-talin chimeric gene to analyze the role of the actin cytoskeleton in trichome cell morphogenesis. We found that during trichome cell development the actin microfilaments assumed an increasing degree of complexity from fine filaments to thick, longitudinally stretched cables. Disruption of the F-actin cytoskeleton by actin antagonists produced distorted but branched trichomes which phenocopied trichomes of mutants belonging to the 'distorted' class. Subsequent analysis of the actin cytoskeleton in trichomes of the distorted mutants, alien, crooked, distorted1, gnarled, klunker and wurm uncovered actin organization defects in each case. Treatments of wild-type seedlings with microtubule-interacting drugs elicited a radically different trichome phenotype characterized by isotropic growth and a severe inhibition of branch formation; these trichomes did not show defects in actin cytoskeleton organization. A normal actin cytoskeleton was also observed in trichomes of the zwichel mutant which have reduced branching. ZWICHEL, which was previously shown to encode a kinesin-like protein is thought to be involved in microtubule-linked processes. Based on our results we propose that microtubules establish the spatial patterning of trichome branches whilst actin microfilaments elaborate and maintain the overall trichome pattern during development.  相似文献   

7.
Despite a number of recent molecular phylogenetic studies on Phlomoides, in terms of trichome morphology the genus is still among the most poorly studied taxa in the family Lamiaceae. In order to test the utility of trichome characters for delimitation of sections, subsection and species of Phlomoides, we examined trichomes of 64 species representing all recognized sections and subsections using stereomicroscopy and scaning electron microscopy. Two basic types of trichomes could be identified: non‐glandular and glandular. Both trichome types can be simple or branched. The glandular trichomes were sessile, short stalked or long stalked. Different kinds of branched trichomes were observed in most species of P. sect. Phlomoides, i.e. symmetrically stellate, stellate with a central long branch, bi‐ or trifurcate. The species of P. sect. Filipendula were mostly covered by simple trichomes. Moreover, variation in trichome characters appears to have particular value, not only for the classification at sectional or subsectional rank, but also for delimitation of species within each section. For example, all studied species of P. subsect. Fulgentes are characterized by various kinds of stellate trichomes, while the trichome variability in P. subsect. Tetragonae was sufficiently high for species discrimination. An ancestral character state reconstruction was performed in order to investigate the evolution of trichome types and it revealed the following evolutionary trends in trichome characters of Phlomoides: 1) branched trichomes are primitive in Phlomoides as compared to simple ones, 2) long simple non‐glandular trichomes are derived as compared to short simple ones and 3) the presence of stalked glandular trichomes is advanced as compared to subsessile or sessile ones.  相似文献   

8.
Mathur J  Chua NH 《The Plant cell》2000,12(4):465-478
The single-cell trichomes in wild-type Arabidopsis are either unbranched or have two to five branches. Using transgenic Arabidopsis plants expressing a green fluorescent protein-microtubule-associated protein4 fusion protein, which decorates the microtubular cytoskeleton, we observed that during trichome branching, microtubules reorient with respect to the longitudinal growth axis. Considering branching to be a localized microtubule-dependent growth reorientation event, we investigated the effects of microtubule-interacting drugs on branch induction in trichomes. In unbranched trichomes of the mutant stichel, a change in growth directionality, closely simulating branch initiation, could be elicited by a short treatment with paclitaxel, a microtubule-stabilizing drug, but not with microtubule-disrupting drugs. The growth reorientation appeared to be linked to increased microtubule stabilization and to aster formation in the treated trichomes. Taxol-induced microtubule stabilization also led to the initiation of new branch points in the zwichel mutant of Arabidopsis, which is defective in a kinesin-like microtubule motor protein and possesses trichomes that are less branched. Our observations suggest that trichome cell branching in Arabidopsis might be mediated by transiently stabilized microtubular structures, which may form a component of a multiprotein complex required to reorient freshly polymerizing microtubules into new growth directions.  相似文献   

9.
Trichomes of 37 taxa of the genus Stachys and one species of Sideritis (S. montana) were examined using light and scanning electron microscopy. The indumentum shows considerable variability among different species, but is constant among different populations of one species, and therefore, affords valuable characters in delimitation of sections and species. The characters of taxonomic interest were presence of glandular and non-glandular trichomes, thickness of the cell walls, number of cells (unicellular or multi-cellular), presence of branched (dendroid) trichomes, presence of vermiform trichomes, orientation of trichomes in relation to the epidermal surface, curviness of trichomes, and presence of papillae on trichome surface. Two basic types of trichomes can be distinguished: glandular and non-glandular trichomes. The glandular trichomes can in turn be subdivided into subtypes: stalked, subsessile, or sessile. The stalks of the glandular trichomes can be uni- or multi-cellular. Simple unbranched and branched trichomes constitute two subtypes of non-glandular trichomes. Our data do not provide any support for separation of Sideritis from Stachys. The following evolutionary trends are suggested here for Stachys: vermiform trichomes with stellate base are primitive against vermiform trichomes with tuberculate base, long vermiform trichomes are primitive against the short simple trichomes, appressed trichomes are advanced against spreading ones, and loss of glandular trichomes is advanced against their presence. Overall, trichome micromorphology is more useful in separation of species within sections rather than characterizing large natural groups known as sections, except for few cases.  相似文献   

10.
Szymanski DB  Marks MD  Wick SM 《The Plant cell》1999,11(12):2331-2347
Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.  相似文献   

11.
Ptyxis, phenology, and leaf trichomes are described for 43 species representing all ten genera in the Cycadales. The typical annual growth sequence is: leaf flush production, cataphyll production, reproductive production, and finally cataphyll production in all taxa except Stangeria which does not have cataphylls and produces leaves one at a time throughout the year. The leaf and cataphyll bases are slightly winged except in Zamia and Ceratozamia, which have well developed stipules, and in Stangeria, which has a distinctive adaxial, stipular hood on the leaf bases. Longitudinal ptyxis of the whole leaf is of four types: circinate (only in Bowenia); erect (Cycas, Dioon, Encephalartos, Lepidozamia, Macrozamia, Microcycas, and some Zamia spp.); inflexed (Stangeria, Ceratozamia, and some Zamia spp.); and reflexed (rarely found in Cycas and Dioon). The pinnae are oriented so that the horizontal ptyxis is conduplicate in all taxa except Bowenia and Cycas where it is involute. The individual pinnae are circinate in Bowenia and Cycas, conduplicate in Stangeria, and flat in all other taxa. The pinnules of Bowenia are also flat. Leaf trichomes are of six types: transparent unbranched; transparent branched; colored unbranched; colored branched; colored idioblastic; and short colored curved. Cycas has only transparent branched (unequally) and unbranched. Ceratozamia, Dioon, Encephalartos, and Stangeria have transparent and colored trichomes, both unbranched. Bowenia, Lepidozamia and Macrozamia have short colored curved hairs and transparent unbranched hairs. Macrozamia is the only taxon with colored idioblastic trichomes. Zamia and Microcycas have transparent and colored hairs. Both trichome types occur branched and unbranched. Because of its decompound leaf, circinate ptyxis, cones on short determinate branches and other distinct characters the family Boweniaceae D. Stevenson fam. nov. is described. This family contains one genus: Bowenia.  相似文献   

12.
Summary The normal stigma of Pennisetum typhoides is twin-branched, each branch bearing unbranched trichomes. As is general among the grasses, the papillate cells of the trichomes possess a discontinuous cuticle with overlying protein and polysaccharide secretions. These adaptations for pollen capture and hydration are absent from the stigma axes. Pollen tubes emerging from grains received on the trichomes are guided into the axes with the tips directed towards the ovary by the architecture of the basal cell complex. There are no defined transmitting tracts in the stigma axes, and further passage is through intercellular spaces of a tissue of elongated cells between the epidermis and the central vascular strands. In the mutant tr, tr, the stigmas are twin-branched, but lack trichomes. However, the principal adaptations of the trichome cells for the capture and hydration of pollen are expressed in the epidermal cells of the branches, which have permeable cuticles and the characteristic surface secretions. Pollen tubes emerging from grains germinating on the branches enter between the files of epidermal cells, or at their ends. In the absence of the guidance provided by trichome structure in the normal stigma, they pass indifferently either towards or away from the ovary. The implications of the comparison between the normal and mutant genotypes for understanding the requirements for pollen capture, germination and pollen-tube guidance in the grasses are discussed.  相似文献   

13.
14.
We observed induction of additional trichome formation on the adaxial surface of mature leaves of Arabidopsis after massive doses (1-3 kilograys) of gamma-radiation from cobalt-60. A typical increase in trichome number was observed in the seventh leaf when the full expansion of the fifth leaf was irradiated. Under normal growth conditions, trichome numbers on the adaxial surface of seventh leaf of the Arabidopsis ecotypes Columbia (Col) and Landsberg erecta (Ler) were 122.5 +/- 22.7 and 57.5 +/- 14.5, respectively. However, gamma-radiation induced additional trichome formation and the numbers rose to 207.9 +/- 43.7 and 95.0 +/- 27.1 in Col and Ler, respectively. In Col the shape of new trichomes was intact and their formation was spatially maintained at equal distances from other trichomes. In Ler trichome morphology was aberrant and the formation was relatively random. Treatment with antioxidants before gamma-irradiation suppressed the increase in trichome number, and treatment with methyl viologen and light induced small trichomes. These results suggest that gamma-radiation-induced trichome formation is mediated by active oxygen species generated by water radiolysis. gamma-Radiation-induced trichome formation was blocked in the trichome mutants ttg-1, gl1-1, and gl2-1. These results suggest that gamma-radiation-induced trichome formation is mediated by the normal trichome developmental pathway.  相似文献   

15.
Leaves of 25 species which cover 13 genera of the Chinese Hamamelidaceae (sensu lato ) were examined by light microscope (LM) and scanning electron microscope (SEM) to reveal the nature and variation of trichomes. The trichomes showed greater diversity under SEM than under LM and naked eyes. Based on Theobald’s scheme, they can be divided into four types: 1. Simple trichomes: Unbranched, curved or straight (Altingia, liquidambar, Semiliquidambar; 2. 2- 4 armed trichomes: Two to four branched (Corylopsis, Loropetalum, sinowilsonia); 3. Stellate trichomes: With more than five branches. They may be tufted (Forthunearia, Loropetalum, sinowilsonia, Hamamelis, Distylium) or storied (Eustigma); 4. Scales: Peltate and flattened. In the genus Rhodoleia, the scales are totally composed of small boat-shaped ones, whereas in the genus Sycopsis they are rotately branched on the verge but unbranched and flattened in the middle. The distribution of trichome types is of grest significance in hamamelidaceous phylogeny. The simple trichomes mainly exist in Liquidambaroideae and Exbucklandioideae, the stellate and 2-4 armed trichomes occur in Hamamelidoideae, and the scales are confined to Sycopsis (Hamamelidoideae) and Rhodoleia (Rhodoleioideae). From this fact, the authors consider that there are two evolutionary lines in the family, i. e. the Disanthoideae- Exbucklandioideae- Liquidambaroideae line and the Rhodoleioideae-Hamamelidoideae line though some subfamilies are isolated. Within Hamamelidoideae, the trichome types also have taxonomic significance. Corylopsis is a primitive group, whereas Eustigma, Distylium and Sycopsis are respectively on the top of evolutionary branches and the other genera are transitional groups. These genera might be separated as tribes, Corylopsideae, Eustigmateae, Distylieae, Sycopsideaeand Hamamelideae. The relationships among these tribes are given in Fig. l.  相似文献   

16.
The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.  相似文献   

17.
We consider the active shell as a single-cell or epithelial sheet surface that, sharing basic properties of stretched elastic shells, is capable of active planar movement owing to recruiting of the new surface elements. As model examples of their morphogenesis, we consider the growth and differentiation of single-cell hairs (trichomes) in plants of the genus Draba, and the epiboly and formation of the dorsoventral polarity in loach. The essential feature of the active shell behavior at both cellular and supracellular levels is regular deviating from the spatially homogeneous form, which is a primary cause of originating of the active mechanical stresses inside the shell in addition to its passive stretching by the intrinsic forces. Analyzing the quantitative morphological data, we derive the equations in which the temporal self-oscillations and spatial differentiation are distinguishable only at the parametric level depending on the proportion of active to passive stresses. In contrast to the ordinary activator-inhibitor systems, the self-oscillation dynamics is principally non-local and, consequently, one-parametric, the shell surface curvature being an analog of the inhibitor, while its spatial variance being an analog of the activator of shaping. Analyzing variability and evolution of the hair cell branching, we argue that the linear ontogeny (succession of the developmental stages) is a secondary evolutionary phenomenon originating from cyclic self-organizing algorithms of the active shell shaping.  相似文献   

18.
19.
The micromorphology of trichomes of the leaves of 17 taxa (including two varieties) of the genus Chelonopsis Miq. and of six species representing four additional genera (Bostrychanthera deflexa Benth., Colquhounia coccinea Wall. var. coccinea, Co. seguinii Vaniot. var. seguinii, Gomphostemma chinense Oliv. var. chinense, G. crinitum Wall. ex Benth. and Physostegia virginiana (L.) Benth.) was surveyed by light and scanning electron microscopy. Two basic types of trichomes can be identified: non-glandular and glandular trichomes. The non-glandular trichomes can be subdivided into two subtypes: simple unbranched and branched trichomes. Based on the cell number, simple unbranched trichomes are further divided into four shapes (unicellular, two-celled, three-celled, and more than three cells), whilst branched trichomes are separated into three shapes (biramous, stellate, and dendroid trichomes). The glandular trichomes can in turn be subdivided into four subtypes: subsessile, capitate, clavate, and sunken. Non-glandular trichomes with two cells (NGTW) and subsessile glandular trichomes (GSU) are most widespread in all taxa examined. The indumentum shows considerable variation among different sections or species. Consequently, trichome micromorphology and distribution have high taxonomic value for Chelonopsis at both infrageneric and interspecific levels. The presence of capitate glandular trichomes (GCA) provides an additional morphological character to clarify the boundaries between subgenus Chelonopsis and Aequidens Wu and Li. Within subgenus Aequidens, non-glandular trichomes with more than three cells (NGMT) and clavate glandular trichomes (GCL) are important characters for sectional division between sect. Aequidens Wu and Li and sect. Microphyllum Wu and Li. Again, three forms of three-celled trichomes can be used as a distinctive taxonomic character at specific level between C. albiflora Pax et K. Hoffm. ex Limpr., C. forrestii J. Anthony, and C. souliei (Bonati) Merr. in sect. Aequidens. This study supports Wu's delimitation of subgenus and sections and the subsequent review work by Xiang et al. Additionally, distribution of trichome types is correlated with the altitudinal distribution and habitats of some species in Chelonopsis.  相似文献   

20.
Habitat complexity can mediate interactions among predators and herbivores and influences arthropod population density and community structure. The abundance of many predatory mites (Acari: Phytoseiidae) is positively associated with abundance of non‐glandular trichomes. We hypothesized that (1) increasing the complexity (trichome density mimicked with cotton fiber patches) of the habitat that predatory mites encounter on leaves would reduce adult dispersal from plants, and (2) increasing habitat complexity would reduce the time that mites spend walking. Typhlodromus pyri Scheuten retention on plants increased linearly in the presence of trichome mimics; mites placed on plants lacking leaf trichomes showed a behavioral response that led to active dispersal. Phytoseiid retention increased with both fiber patch size and fiber density within patches. Moving fiber patches from the underside of the leaf to the upper leaf surface did not change phytoseiid retention but did alter egg distribution, suggesting trichomes do not exclusively influence phytoseiid behavior. Phytoseiid activity level as measured by the amount of time spent walking did not decrease with the addition of fibers. Overall, increasing habitat complexity in the form of non‐glandular trichomes strongly reduced T. pyri dispersal behavior; the predatory mites showed a consistent preference for complex trichome‐rich habitat that was manifest both rapidly and in absence of predators. Hence, the frequently observed pattern of population‐level accumulation of phytoseiids on trichome‐rich plants appears to be driven by a behavioral response to the presence and abundance of non‐glandular trichomes on the leaf surface manifested in the level of dispersal and/or retention. The primary implication of phytoseiid–habitat interactions for biocontrol programs is that where plants have no trichomes, T. pyri will not establish. Whether this behavioral response pattern is a general response of phytoseiids to leaf trichomes or varies with species is a question that remains unanswered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号