首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the gross morphology of amyloid fibrils is fairly well understood, very little is known about how the constituent polypeptides fold within the amyloid folding motif. In the experiments reported here, we used trypsin and chymotrypsin to conduct limited proteolysis studies on synthetic amyloid fibrils composed of the Alzheimer's disease peptide Abeta(1-40). In both reactions, the extreme N-terminal proteolytic fragment is released from fibrils as rapidly as it is from the Abeta monomer, while other proteolytic fragments are generated much more slowly. Furthermore, aggregated material isolated by centrifugation of intermediate digestion time points from both proteases contains, in addition to full-length material, peptides that possess mature C-termini but truncated N-termini. These data strongly suggest that the N-terminal region of Abeta is not involved in the beta-sheet network of the amyloid fibril, while the C-terminus is essentially completely engaged in protective-presumably beta-sheet-structure. In both digests, release of the extreme N-terminal fragments of Abeta(1-40) reaches plateau values corresponding to about 80% of the total available Abeta. This suggests that there are two classes of peptides in the fibril: while the majority of Abeta molecules have an exposed N-terminus, about 20% of the peptides have an N-terminus that is protected from proteolysis within the fibril structure. The most likely cause of this heterogeneity is the lateral association of protofilaments into the fibril structure, which would be expected to generate a unique environment for those Abeta N-termini located at protofilament packing interfaces and/or in the interior core region between the packed protofilaments. This suggests that the N-terminal region of Abeta, while not directly involved in the beta-sheet network of the fibril, may contribute to fibril stability by participating in protofilament packing.  相似文献   

2.
Protofibrils are transient structures observed during in vitro formation of mature amyloid fibrils and have been implicated as the toxic species responsible for cell dysfunction and neuronal loss in Alzheimer's disease (AD) and other protein aggregation diseases. To better understand the roles of protofibrils in amyloid assembly and Alzheimer's disease, we characterized secondary structural features of these heterogeneous and metastable assembly intermediates. We chromatographically isolated different size populations of protofibrils from amyloid assembly reactions of Abeta(1-40), both wild type and the Arctic variant associated with early onset familial AD, and exposed them to hydrogen-deuterium exchange analysis monitored by mass spectrometry (HX-MS). We show that HX-MS can distinguish among unstructured monomer, protofibrils, and fibrils by their different protection patterns. We find that about 40% of the backbone amide hydrogens of Abeta protofibrils are highly resistant to exchange with deuterium even after 2 days of incubation in aqueous deuterated buffer, implying a very stable, presumably H-bonded, core structure. This is in contrast to mature amyloid fibrils, whose equally stable structure protects about 60% of the backbone amide hydrogens over the same time frame. We also find a surprising degree of specificity in amyloid assembly, in that wild type Abeta is preferentially excluded from both protofibrils and fibrils grown from an equimolar mixture of wild type and Arctic mutant peptides. These and other data are interpreted and discussed in terms of the role of protofibrils in fibril assembly and in disease.  相似文献   

3.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

4.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

5.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

6.
Aggregation and fibril formation of amyloid-beta (Abeta) peptides Abeta40 and Abeta42 are central events in the pathogenesis of Alzheimer disease. Previous studies have established the ratio of Abeta40 to Abeta42 as an important factor in determining the fibrillogenesis, toxicity, and pathological distribution of Abeta. To better understand the molecular basis underlying the pathologic consequences associated with alterations in the ratio of Abeta40 to Abeta42, we probed the concentration- and ratio-dependent interactions between well defined states of the two peptides at different stages of aggregation along the amyloid formation pathway. We report that monomeric Abeta40 alters the kinetic stability, solubility, and morphological properties of Abeta42 aggregates and prevents their conversion into mature fibrils. Abeta40, at approximately equimolar ratios (Abeta40/Abeta42 approximately 0.5-1), inhibits (> 50%) fibril formation by monomeric Abeta42, whereas inhibition of protofibrillar Abeta42 fibrillogenesis is achieved at lower, substoichiometric ratios (Abeta40/Abeta42 approximately 0.1). The inhibitory effect of Abeta40 on Abeta42 fibrillogenesis is reversed by the introduction of excess Abeta42 monomer. Additionally, monomeric Abeta42 and Abeta40 are constantly recycled and compete for binding to the ends of protofibrillar and fibrillar Abeta aggregates. Whereas the fibrillogenesis of both monomeric species can be seeded by fibrils composed of either peptide, Abeta42 protofibrils selectively seed the fibrillogenesis of monomeric Abeta42 but not monomeric Abeta40. Finally, we also show that the amyloidogenic propensities of different individual and mixed Abeta species correlates with their relative neuronal toxicities. These findings, which highlight specific points in the amyloid peptide equilibrium that are highly sensitive to the ratio of Abeta40 to Abeta42, carry important implications for the pathogenesis and current therapeutic strategies of Alzheimer disease.  相似文献   

7.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

8.
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

9.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

10.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

11.
We describe here the use of cysteine substitution mutants in the Alzheimer disease amyloid plaque peptide Abeta-(1-40) to probe amyloid fibril structure and stabilization. In one approach, amyloid fibrils were grown from Cys mutant peptides under reducing conditions and then challenged with an alkylating agent to probe solvent accessibility of different residues in the fibril. In another approach, monomeric Cys mutants, either in the thiol form or modified with iodoacetic acid or methyl iodide, were grown into amyloid fibrils, and the equilibrium position at the end of the amyloid formation reaction was quantified by determining the concentration of monomeric Abeta. The DeltaG values of fibril elongation obtained were then compared in order to provide information on the environment of each residue side chain in the fibril. In general, Cys residues in the N and C termini of Abeta-(1-40) were not only accessible to alkylation in the fibril state but also, when modified in the monomeric state, did not greatly impact fibril stability; these observations were consistent with previous indications that these portions of the peptide are not part of the amyloid core. In contrast, residues 16-19 and 31-34 were not only uniformly inaccessible to alkylation in the fibril state, but their modification with the negatively charged carboxymethyl group in monomeric Abeta also destabilized fibril elongation, confirming other data showing that these segments are likely packed into a hydrophobic amyloid core. Residues 20, 30, and 35, flanking these implicated beta-sandwich regions, are accessible to alkylation in the fibril indicating a location in solvent exposed structure.  相似文献   

12.
Alzheimer disease is characterized by the accumulation of aggregated amyloid beta-peptide (Abeta) in the brain. The physiological mechanisms and factors that predispose to Abeta aggregation and deposition are not well understood. In this report, we show that calcium can predispose to Abeta aggregation and fibril formation. Calcium increased the aggregation of early forming protofibrillar structures and markedly increased conversion of protofibrils to mature amyloid fibrils. This occurred at levels 20-fold below the calcium concentration in the extracellular space of the brain, the site at which amyloid plaque deposition occurs. In the absence of calcium, protofibrils can remain stable in vitro for several days. Using this approach, we directly compared the neurotoxicity of protofibrils and mature amyloid fibrils and demonstrate that both species are inherently toxic to neurons in culture. Thus, calcium may be an important predisposing factor for Abeta aggregation and toxicity. The high extracellular concentration of calcium in the brain, together with impaired intraneuronal calcium regulation in the aging brain and Alzheimer disease, may play an important role in the onset of amyloid-related pathology.  相似文献   

13.
We describe here an alanine scanning mutational analysis of the Abeta(1-40) amyloid fibril monitored by fibril elongation thermodynamics derived from critical concentration values for fibril growth. Alanine replacement of most residues in the amyloid core region, residues 15-36, leads to destabilization of the elongation step, compared to wild-type, by about 1kcal/mol, consistent with a major role for hydrophobic packing in Abeta(1-40) fibril assembly. Where comparisons are possible, the destabilizing effects of Ala replacements are generally in very good agreement with the effects of Ala replacements of the same amino acid residues in an element of parallel beta-sheet in the small, globular protein Gbeta1. We utilize these Ala-WT DeltaDeltaG values to filter previously described Pro-WT DeltaDeltaG values, creating Pro-Ala DeltaDeltaG values that specifically assess the sensitivity of a sequence position, in the structural context of the Abeta fibril, to replacement by proline. The results provide a conservative view of the energetics of Abeta(1-40) fibril structure, indicating that positions 18-21, 25-26, and 32-33 within amyloid structure are particularly sensitive to the main-chain disrupting effects of Pro replacements. In contrast, residues 14-17, 22, 24, 27-31, and 34-39 are relatively insensitive to Pro replacements; most N-terminal residues were not tested. The results are discussed in terms of amyloid fibril structure and folding energetics, in particular focusing on how the data compare to those from other structural studies of Abeta(1-40) amyloid fibrils grown in phosphate-buffered saline at 37 degrees C under unstirred ("quiescent") conditions.  相似文献   

14.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

15.
Using the experimental structures of Abeta amyloid fibrils and all-atom molecular dynamics, we study the force-induced unbinding of Abeta peptides from the fibril. We show that the mechanical dissociation of Abeta peptides is highly anisotropic and proceeds via different pathways when force is applied in parallel or perpendicular direction with respect to the fibril axis. The threshold forces associated with lateral unbinding of Abeta peptides exceed those observed during the mechanical dissociation along the fibril axis. In addition, Abeta fibrils are found to be brittle in the lateral direction of unbinding and soft along the fibril axis. Lateral mechanical unbinding and the unbinding along the fibril axis load different types of fibril interactions. Lateral unbinding is primarily determined by the cooperative rupture of fibril backbone hydrogen bonds. The unbinding along the fibril axis largely depends on the interpeptide Lys-Asp electrostatic contacts and the hydrophobic interactions formed by the Abeta C terminal. Due to universality of the amyloid beta structure, the anisotropic mechanical dissociation observed for Abeta fibrils is likely to be applicable to other amyloid assemblies. The estimates of equilibrium forces required to dissociate Abeta peptide from the amyloid fibril suggest that these supramolecular structures are mechanically stronger than most protein domains.  相似文献   

16.
The most well-established structural feature of amyloid fibrils is the cross-beta motif, an extended beta-sheet structure formed by beta-strands oriented perpendicular to the long fibril axis. Direct experimental identification of non-beta-strand conformations in amyloid fibrils has not been reported previously. Here we report the results of solid-state NMR measurements on amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), prepared synthetically with pairs of (13)C labels at consecutive backbone carbonyl sites. The measurements probe the peptide backbone conformation in residues 24-30, a segment where a non-beta-strand conformation has been suggested by earlier sequence analysis, cross-linking experiments, and molecular modeling. Data obtained with the fpRFDR-CT, DQCSA, and 2D MAS exchange solid-state NMR techniques, which provide independent constraints on the phi and psi backbone torsion angles between the labeled carbonyl sites, indicate non-beta-strand conformations at G25, S26, and G29. These results represent the first site-specific identification and characterization of non-beta-strand peptide conformations in an amyloid fibril.  相似文献   

17.
The N-terminal 1–83 residues of apolipoprotein A-I (apoA-I) have a strong propensity to form amyloid fibrils, in which the 46–59 segment was reported to aggregate to form amyloid-like fibrils. In this study, we demonstrated that a fragment peptide comprising the extreme N-terminal 1–43 residues strongly forms amyloid fibrils with a transition to β-sheet-rich structure, and that the G26R point mutation enhances the fibril formation of this segment. Our results suggest that in addition to the 46–59 segment, the extreme N-terminal region plays a crucial role in the development of amyloid fibrils by the N-terminal fragment of amyloidogenic apoA-I variants.  相似文献   

18.
The 39- to 42-residue-long amyloid beta-peptide (Abeta-peptide) forms filamentous structures in the neuritic plaques found in the neuropil of Alzheimer's disease patients. The assembly and deposition of Abeta-fibrils is one of the most important factors in the pathogenesis of this neurodegenerative disease. Although the structural analysis of amyloid fibrils is difficult, single-molecule methods may provide unique insights into their characteristics. In the present work, we explored the nanomechanical properties of amyloid fibrils formed from the full-length, most neurotoxic Abeta1-42 peptide, by manipulating individual fibrils with an atomic force microscope. We show that Abeta-subunit sheets can be mechanically unzipped from the fibril surface with constant forces in a reversible transition. The fundamental unzipping force (approximately 23 pN) was significantly lower than that observed earlier for fibrils formed from the Abeta1-40 peptide (approximately 33 pN), suggesting that the presence of the two extra residues (Ile and Ala) at the peptide's C-terminus result in a mechanical destabilization of the fibril. Deviations from the constant force transition may arise as a result of geometrical constraints within the fibril caused by its left-handed helical structure. The nanomechanical fingerprint of the Abeta1-42 is further influenced by the structural dynamics of intrafibrillar interactions.  相似文献   

19.
The underlying cause of Alzheimer's disease is thought to be the aggregation of monomeric beta-amyloid (Abeta), through a series of toxic oligomers, which forms the mature amyloid fibrils that accumulate at the center of senile plaques. It has been reported that L-(-)-nicotine prevents Abeta aggregation and toxicity, and inhibits senile plaque formation. Previous NMR studies have suggested that this could be due to the specific binding of L-(-)-nicotine to histidine residues (His6, His13, and His14) in the peptide. Here, we have looked at the effects of both of the L-(-) and D-(+) optical enantiomers of nicotine on the aggregation and cytotoxicity of Abeta(1-40). Surprisingly, both enantiomers inhibited aggregation of the peptide and reduced the toxic effects of the peptide on cells. In NMR studies with Abeta(1-40), both enantiomers of nicotine were seen to interact with the three histidine residues. Overall, our data indicate that nicotine can delay Abeta fibril formation and maintain a population of less toxic Abeta species. This effect cannot be due to a highly specific binding interaction between nicotine and Abeta, as previously thought, but could be due instead to weaker, relatively nonspecific binding, or to the antioxidant or metal chelating properties of nicotine. D-(+)-nicotine, being biologically much less active than L-(-)-nicotine, might be a useful therapeutic agent.  相似文献   

20.
Amyloid fibrils associated with Alzheimer's disease and a wide range of other neurodegenerative diseases have a cross beta-sheet structure, where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. The surface of the beta-sheet has pronounced ridges and grooves when the individual beta-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Abeta amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Abeta40 and against Gly37 in the C-terminus of Abeta42. These packing interactions suggest that the protofilament subunits are displaced relative to one another in the Abeta40 and Abeta42 fibril structures. We take advantage of this corrugated structure to design a new class of inhibitors that prevent fibril formation by placing alternating glycine and aromatic residues on one face of a beta-strand. We show that peptide inhibitors based on a GxFxGxF framework disrupt sheet-to-sheet packing and inhibit the formation of mature Abeta fibrils as assayed by thioflavin T fluorescence, electron microscopy, and solid-state NMR spectroscopy. The alternating large and small amino acids in the GxFxGxF sequence are complementary to the corresponding amino acids in the IxGxMxG motif found in the C-terminal sequence of Abeta40 and Abeta42. Importantly, the designed peptide inhibitors significantly reduce the toxicity induced by Abeta42 on cultured rat cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号