首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Neurotrophic factors in Alzheimer's disease: role of axonal transport   总被引:4,自引:0,他引:4  
Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer's disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain-derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin-3, neurotrophin-4/5 and fibroblast growth factor-2) and their receptors [tropomyosin-related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid-β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD-specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology.  相似文献   

2.
3.
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named “MitoQuant”. This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.  相似文献   

4.
Alzheimer's disease, in its early onset familial form, is known to be a heterogeneous disorder. This suggests that the different degenerative mechanisms, initiated by different genetic causes and ending in the shared phenotype of the disease, should intersect at some point in the degenerative cascade to form a 'bottleneck' from which the pathological features that are common to each of the genetic forms emerge. A growing body of evidence suggests that disturbances of energy metabolism may play a fundamental role in the onset and progression of Alzheimer's disease. In light of this, we propose a 'mitochondrial bottleneck hypothesis', which unifies the various forms of the disease in which different causes lead to the disorder via disturbances of mitochondrial function. The characterization of such a bottleneck would present a unique target for therapeutic intervention because it would be the earliest point in a neurodegenerative cascade shared by all forms of Alzheimer's disease, independent of cause.  相似文献   

5.
6.
In addition to pathology in the gray matter, there are also abnormalities in the white matter in Alzheimer's disease (AD). Sulfatide species are a class of myelin-specific sphingolipids and are involved in certain diseases of the central nervous system. To assess whether sulfatide content in gray and white matter in human subjects is associated with both the presence of Alzheimer's disease (AD) pathology as well as the stage of dementia, we analyzed the sulfatide content of brain tissue lipid extracts by electrospray ionization mass spectrometry from 22 subjects whose cognitive status at time of death varied from no dementia to very severe dementia. All subjects with dementia had AD pathology. The results demonstrate that: (i) sulfatides were depleted up to 93% in gray matter and up to 58% in white matter from all examined brain regions from AD subjects with very mild dementia, whereas all other major classes of lipid (except plasmalogen) in these subjects were not altered in comparison to those from age-matched subjects with no dementia; (ii) there was no apparent deficiency in the biosynthesis of sulfatides in very mild AD subjects as characterized by the examination of galactocerebroside sulfotransferase activities in post-mortem brain tissues; (iii) the content of ceramides (a class of potential degradation products of sulfatides) was elevated more than three-fold in white matter and peaked at the stage of very mild dementia. The findings demonstrate that a marked decrease in sulfatides is associated with AD pathology even in subjects with very mild dementia and that these changes may be linked with early events in the pathological process of AD.  相似文献   

7.
The amyloid hypothesis for Alzheimer's disease: a critical reappraisal   总被引:1,自引:0,他引:1  
The amyloid hypothesis has been the basis for most work on the pathogenesis of Alzheimer's disease. Recent clinical trials based on this hypothesis have been inconclusive. In this article I review the current status of the hypothesis and suggest that a major scientific need is to understand the normal function of amyloid-β precursor protein (APP) and think how this may relate to the cell death in the disease process.  相似文献   

8.
Axonal transport has been extensively studied for a period of 20–30 years, but there is still no general consensus concerning the mechanism by which this transport process operates. An important development in this regard is the recent studies in the physical biochemistry group in the Department of Biochemistry at Monash University where it has been demonstrated that ordered flows may be generated spontaneously in polymer systems under non-equilibeium conditions. The new phenomenon exhibits many novel features, particularly with respect to polymer transport, which bear marked similarity to the behaviour of components in axonal transport. This article sets out to essentiallybring to the attention of those in the neurosciences some of the properties of ordered structured flows in polymer solutions. These properties may generate a different view in the understanding of the mechanism of axonal transport.  相似文献   

9.
A new technique for studying axonal transport has been developed. The technique, which is based on histofluorescence techniques, enables the measurement of several different accumulated substances and parameters within a single nerve in relation to a nerve crush or local cooling. Any substance that can be made to fluoresce can be measured. The tissue is treated according to the formaldehyde-induced fluorescence method of Hillarp and Falck for visualization of monoamines, or according to the indirect immunofluorescence method. For immunofluorescence the nerve is cryostat-sectioned and various sections can be incubated with primary antisera against different antigens. After incubation and mounting the sections are placed in a cytofluorimeter (Leitz MPV II). They are passed under a measuring slit at a steady speed by a motor driven cross-table. The fluorescence intensity passing through the measuring slit is continuously registered by a recording unit with an integrator. This recorder produces a graphical nerve accumulation profile, and the area under the profile, relating to the fluorescence, is expressed in arbitrary units. This article presents data on the accumulation of noradrenaline, dopamine beta-hydroxylase, and tyrosine hydroxylase in crush-operated rat sciatic nerve. The time-course accumulations for noradrenaline (visualized by the Falck and Hillarp method) and dopamine beta-hydroxylase (visualized by immunofluorescence) demonstrated a striking similarity, which is to be expected since the two substances are stored in the same organelle. Tyrosine hydroxylase (visualized by immunofluorescence) showed a slower accumulation with time, but faster than would be expected had the enzyme been 100% soluble. Colchicine but not lumi-colchicine blocked the transport of noradrenaline organelles. With the new scanning technique we have the potential to study accumulation profiles of several different substances within a single nerve. Morphometric data, morphological observations, and photograph documentation of the same nerve section are also available.  相似文献   

10.
Neuroimaging offers a promising tool for the priority goals of current researches in Alzheimer's disease (AD) including early diagnosis, monitoring the progression of the disease and understanding the underlying mechanisms. The brain profiles of atrophy and hypometabolism associated with AD are well known and they can be used as support for early diagnosis, although the accuracy of each of these biomarkers on its own is not sufficient. An increasing number of studies highlights the relevance of disconnection processes in the development and progression of AD. The recent development of PET tracers such as the Pittsburg compound (PiB) allowing to visualize in vivo one of the neuropathological lesions characterizing AD (i.e. beta-amyloid depositions) offers a unique opportunity to better understand the mechanisms underlying this multifaceted disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号