首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asparagus spears collected from a total of six commercial plantings in Austria during the main harvest periods in May and June of 2003 and 2004 were examined for endophytic colonization byFusarium spp., particularlyF. proliferatum. Potentially toxigenic fungi such asF. proliferatum were isolated and identified by morphological characteristics using light microscopy. Fumonisin B1 inF. proliferatum-infected asparagus spears was detected with IAS-HPLC-FLD or HPLC-MS/MS. The identity of endophytic fungi colonizing of a total of 816 individual spears was determined. The incidence of infection byF. proliferatum and otherFusarium spp. was highly dependent on location and sampling date. The dominantFusarium species among the endophytic microflora wasF. oxysporum. Other frequently isolated species includedF. proliferatum, F. sambucinum, F. culmorum, F. avenaceum andF. equiseti. The incidence ofF. proliferatum-infected asparagus spears was less than 10% at four of the six sampling locations. At the two remaining locations, 20–47% of the spears examined were infected withF. proliferatum. Further exploration of FB1 generation in asparagus is required because the low levels of FB1 (10–50 (μg/kg) detected in harvested spears in 2003 and 2004 cannot be explained by the results of this study.
  相似文献   

2.
One of the economically important diseases of onion is the basal rot caused by various Fusarium species. Identification of the pathogenic species prevalent in a region is indispensable for designing management strategies, especially to develop resistant cultivars. Eighty Fusarium isolates are obtained from red onion bulbs on infected fields of East Azarbaijan province. Inoculating the onion bulbs with 38 selective isolates indicated that 17 isolates were pathogenic on onion. According to the morphological and molecular characteristics, these isolates were identified as F. oxysporum, F. solani, F. proliferatum and F. redolens. This is the first report of F. redolens on onion in Iran. On the other hand, the virulence of each pathogenic isolate was evaluated on onion bulbs and seedlings. F. oxysporum which causes severe rot and damping-off was considered as a highly virulent species in both conditions. While, F. proliferatum was considered as the most destructive on onion bulbs. Rot ability of F. solani was not considerable, and only the 4S isolate caused pre- and post-emergence damping-off more than 50%. Finally, F. redolens with less pathogenicity on onion bulbs was identified as the most virulent isolate on onion seedlings, which was explanatory of its importance on farm.  相似文献   

3.
The occurrence of Fusarium spp. and associated mycotoxins in asparagus spears was evaluated in Poland in 2002 and 2003 and in Germany in 2002. Spears of two cultivars, Eposs and Gijnlim, were collected from two locations in Poland, Swidwowiec and Poznan, on sandy and sandy loam soil, respectively. Fusarium oxysporum and F. proliferatum were detected at an average incidence of 38.3% and 15.8% in the spear sections sampled, respectively. In stands of 11 (tested) cultivars of asparagus sampled in Germany on sandy soil, the same species dominated, however, they were less frequent than in Poland (26.6% and 5.6% of the spears infected with F. oxysporum and F. proliferatum, respectively). Chemical analyses revealed that fumonisin B1 (FB1) and moniliformin (MON) were present in some of the spears sampled in Poland. FB1 was not found and MON was not assessed in spears sampled in Germany in 2002, but F. proliferatum was able to form the toxin in vitro in the range from 101.4 up to 205.8 μg/kg maize kernel substrate. Asparagus samples in Poland contained FB1 at up to 5.6 μg/kg spear fresh weight. The highest MON concentration (1350 μg/kg) was detected in cultivar Eposs in Marcelin, Poland, in 2002. MON and FB1 were found in spears infected by both F. oxysporum and F. proliferatum, however, only the latter fungus was able to synthesize both toxins.  相似文献   

4.
Asparagus crown and root rot caused by Fusarium oxysporum f.sp. asparagi (Foa), F. proliferatum (Fp) and F. solani (Fs) result in early decline and loss of crop production. The role of several crop species on the survival of the Fusarium spp. was investigated. The root symptoms and plant weight of seven crop species were evaluated after inoculation with each of the three Fusarium spp. The number of colony‐forming units of the Fusarium spp. from root tissues was also determined. Garlic was shown to be a symptomatic host for Foa, Fp and Fs; Fs was also pathogenic to onion. Root colonization of garlic, onion, maize, wheat, potato and sunflower suggested that they are reservoirs of Foa, Fp and Fs from asparagus and demonstrated the importance of crop rotation on the development of this asparagus disease.  相似文献   

5.
Fusarium proliferatum is able to produce fumonisins and is considered a pathogen of many economically important plants (e.g. corn, rice, asparagus) [1]. The occurrence of fumonisin FB1 inF. proliferatum infected asparagus spears from Germany was investigated using a liquid chromatography/electrospray ionization-mass spectrometry (LC-ESI-MS) method with isotopically labeled fumonisin FB1-d6 as internal standard. Asparagus samples were harvested in July 2000 and screened forFusarium species. AltogetherF. oxysporum, F. proliferatum and F. sambucinum were isolated from the spears. The samples infected with F.proliferatum were subsequently analyzed for fumonisins. FB1 was detected in 9 of the 10 samples in amounts ranging from 36.4 ng/g to 4513.7 ng/g (based on dry weight). Fumonisins FB2 and FB3 were found in six samples in lower concentrations. In asparagus spears of June 2002 we could findF. proliferatum in 6% of the samples, however no fumonisins were detectable. Furthermore the capability of producing FB1 by the fungus in garlic bulbs was investigated. Therefore garlic was cultured inF. proliferatum contaminated soil and the bulbs were screened for infection with F.proliferatum and for the occurrence of fumonisins by LC-MS. F.proliferatum was detectable in the garlic tissue and all samples contained FB1 (26.0 ng/g to 94.6 ng/g). This is the first report of the natural occurrence of FB1 in German asparagus spears and furthermore our findings suggest a potential for natural contamination of garlic bulbs with fumonisins. For detailed results and methods see Ref. [2].  相似文献   

6.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

7.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

8.
Abstract

Basal rot is the main and economically soil-borne disease of onion that caused by various Fusarium species worldwide. To identify the prevailing Fusarium species, 140 Fusarium isolates were obtained from red onion bulbs farms in 10 regions of East and West Azarbaijan provinces in 2015. By inoculating 80 selected isolates, 40 of them were pathogenic on onion. These 40 isolates were identified as F. oxysporum with 43.62%, F. subglutinans with 44%, F. culmorum with 50.66%, F. avenaceum with 51%, F. solani with 42.41%, F. crookwellens with 55%, F. proliferatum with 47.16% and F. redolens with 55.5% virulence. Their frequency were 20%, 2.5%, 7.5%, 5%, 42.5%, 2.5%, 15% and 5%, respectively. Forty studied isolates demonstrating that, 14.2% were highly virulent, 26.1% virulent, 40.3% moderately virulent and 19.4% weakly virulent. This is the first report of F. avenaceum and F. crookwellens as the causal agents of red onion basal rot in Iran.  相似文献   

9.
Abstract. The objective of this study is to determine the factors responsible for the distribution of Pinus resinosa (red pine) at its northern limit in northwestern Québec. Pinus resinosa is found only on islands and protected lake shores at its northern distribution boundary. The influence of climate on the germination of P. resinosa seed and on the phenology of P. resinosa was investigated in the Lake Duparquet region of northwestern Québec. The results indicate that P. resinosa seed readily germinates at island- and inland sites, which indicates that germination is not responsible for the distribution of P. resinosa in the Lake Duparquet region. Also, cones and seeds developed normally at island sites and an inland plantation, which suggests that seed production is not hindering the expansion of P. resinosa. These results, together with other studies in the literature, suggest that no climatic factor could explain the present distribution of P. resinosa nor its northern limit. The fire regime appears to be responsible for the restriction of P. resinosa to lake environments and hinders the northward expansion of P. resinosa. The typical crown fire regime of the boreal forest is not conducive for P. resinosa regeneration and restricts the species to fire-sheltered locations such as islands and protected lake shores.  相似文献   

10.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

11.
To identify Fusarium species associated with diseases of root and basal plate of onion, surveys were conducted in seven provinces of Turkey in 2007. Samplings were performed in 223 fields, and 332 isolates belonging to 7 Fusarium spp. were obtained. The isolates were identified as Foxysporum, Fsolani, Facuminatum, Fequiseti, Fproliferatum, Fredolens, and Fculmorum based on morphological and cultural characteristics. Also, species‐specific primers were used to confirm the identity of Fusarium species. Foxysporum was the most commonly isolated species, comprising 66.57% of the total Fusarium species. Fredolens was identified for the first time in onion‐growing areas of Turkey. Selected isolates of each species were evaluated for their aggressiveness on onion plant. Foxysporum, Fsolani, Facuminatum, Fproliferatum, and Fredolens were highly pathogenic, causing severe damping‐off on onion plants cv. Texas Early Grano. Inter‐simple sequence repeats (ISSR) markers revealed a high degree of intra‐ and interspecific polymorphisms among Fusarium spp.  相似文献   

12.
Aqueous and solvent extracts of seeds of P. corylifolia were evaluated for antifungal activity by poisoned food technique against eight important phytopathogenic species of Fusarium commonly associated with maize seeds. Antifungal activity was observed in both aqueous and solvent extracts. Petroleum ether extract showed highly significant activity against all the Fusarium species. F. graminearum was highly susceptible, while F. lateritium was least susceptible. The antifungal activity increased with increasing concentration of the extract. The minimal inhibitory concentration (MIC) value of the aqueous extract for F. graminearum was 15% and for F. equiseti, F. moniliforme, F. semitectum and F. solani it was 40%. Total inhibition was not observed in the case of F. lareritium, F. oxysporum and F. proliferatum. The results of the study are of immense value in the management of seed borne phytopathogenic species of Fusarium known to cause significant yield loss in maize.  相似文献   

13.
PCR analysis was used to detect Fusarium species generically, as well as the mycotoxin-producing species F.␣subglutinans, F. proliferatum, and F. verticillioides in leaf axil and other maize tissues during ear fill in a multiyear study in central Illinois. The frequency of Fusarium detected varied from site to site and year to year. Fusarium was generically detected more frequently in leaf axil material than in leaf/husk lesions. In two growing seasons, the leaf axil samples were also tested for the presence of the mycotoxin producing species F. proliferatum, F. subglutinans, and F. verticillioides. Overall, F. proliferatum and F. verticillioides were detected less often than F. subglutinans. Fusarium was generically and specifically detected most commonly where visible fungal growth was present in leaf axil material. Disclaimer: The mention of firm names or trade products in this article does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar products not mentioned.  相似文献   

14.
The objective of this study was to investigate the relationships between the biotrophic mycoparasite Sphaerodes mycoparasitica and pathogenic Fusarium strains. To study the interactions between S. mycoparasitica and four different phytopathogenic Fusarium strains, macroscopic observations were performed using dual-culture assays and microscopic examinations in combination with light and fluorescent microscopy. Both macroscopic and microscopic techniques were also vital in determining the host specificity of S. mycoparasitica with F. avenaceum, F. oxysporum, F. proliferatum, and F. sporotrichioides. Our results suggest that S. mycoparasitica established haustorial contact with F. avenaceum and F. oxysporum. Data obtained from the dual-culture assay and parasitism interactions revealed that this newly described contact biotrophic mycoparasitic fungus was capable of reducing F. avenaceum and F. oxysporum linear growth and size of hyphal cells through infection and penetration.  相似文献   

15.
Fusarium oxysporum f.sp. asparagi (Foa) incites crown and root rot of asparagus which causes early decline of asparagus plantings. The aim of the present study was to identify the main inoculum sources of the pathogen in the Netherlands. As has been reported for foreign seed lots, Dutch seed lots can be infested with Foa at low levels. We found that seed infestation occurs mainly during the seed harvesting process through infested soil adhering to fallen berries. Soil samples from 59 fields without a history of asparagus growing and differing in their distance from asparagus plantings were tested for infestation with Foa, using a bioassay with asparagus as a bait plant. A high correlation was found between the incidence of infestation and proximity to asparagus fields; Foa was found in 69% of the samples from fresh fields in an asparagus production centre, and in only 6% of the samples from fields at a distance of 1 km and more from asparagus fields and outside a production centre. To evaluate planting material as an inoculum source of Foa, 49 lots of one-year-old crowns from 23 nurseries were collected and rated for disease symptoms. Infestation was found to be common with only two lots free of symptomatic plants. Most of the lots had more than 75% of symptomatic plants. Although most of the plants were infested, they showed only slight root rot symptoms. The procedure for production of Foa-free planting material is discussed. Persistence and infestation of asparagus root residues in former asparagus fields was assessed by retrieving the residues from eight former asparagus fields with an asparagus-free period of one to 25 years, and three fields with a standing asparagus crop. Even after an asparagus-free period of 25 yr asparagus root residues were retrieved from soil, although at low levels. Mean population densities of Fusarium spp. declined from 2 times 106 to 1 times 105 colony forming units g_1 air-dry root tissue during the first 10 years and were still > 104 c.f.u. g“1 air-dry root tissue 20 to 25 yr after asparagus produced was stopped. The population was dominated by F. oxysporum. Eighty-three of the 112 isolates (74%) of F. oxysporum belonged to the forma specialis asparagi. The proportion of Foa in the population did not decrease in time. It was concluded that persistence of Foa in asparagus root residues is a major reason for its long-term survival.  相似文献   

16.
Wilt is a serious disease of guava crop in India. Fusarium oxysporum f. sp. psidii and F. solani have been reported as the main causative agents of this disease. Most recently a survey on guava plants affected with wilt disease was conducted in severely affected areas of India, and two new species of Fusarium viz. Fusarium proliferatum and Fusarium chlamydosporum were found to be associated with this disease. However, pathogenecity of Fusarium chlamydosporum was successfully conducted in the field trials. The culture of F. chlamydosporum was processed for DNA sequencing and DNA sequence was submitted to NCBI with GenBank accession no. HM102506. The submitted DNA sequence of F. chlamydosporum was compared for the genetic position in Fusarium spp. evolutionary phylogenic tree.  相似文献   

17.
Basal rot is a common onion disease and is mainly caused by Fusarium oxysporum f. sp. cepae and Fusarium proliferatum. To study the possibility of using volatile organic compounds (VOCs) as biomarkers for these fungi, pathogenic isolates of F. oxysporum and F. proliferatum from onions were cultivated in onion medium and VOCs were measured by solid phase microextraction (SPME). Forty-two compounds were detected, and thirty of these compounds were highly related to fungal metabolic activity. Allyl mercaptan was specific to F. oxysporum isolate Fox006. Analysis of the VOCs showed significant differences between the two species and among different isolates within the same species. Sixteen of the VOCs showed were highly positively correlated with the fungal biomass estimated by real-time polymerase chain reaction (PCR). Ethanol, ethyl formate, ethyl acetate, 2-methyl-1-propanol, methyl thioacetate, n-propyl acetate and 3-methyl-1-butanol are volatile metabolites that were potential indicators of Fusarium growth on onions.  相似文献   

18.
Fusarium species are dominant within the sorghum grain mold complex. Some species of Fusarium involved in grain mold complex produce mycotoxins, such as fumonisins. An attempt was made to identify Fusarium spp. associated with grain mold complex in major sorghum-growing areas in India through AFLP-based grouping of the isolates and to further confirm the species by sequencing part of α-Elongation factor gene and comparing the sequences with that available in the NCBI database. The dendrogram generated from the AFLP data clustered the isolates into 5 groups. Five species of FusariumF. proliferatum, F. thapsinum, F. equiseti, F. andiyazi and F. sacchari were identified based on sequence similarity of α-Elongation factor gene of the test isolates with those in the NCBI database. Fusarium thapsinum was identified as predominant species in Fusarium—grain mold complex in India and F. proliferatum as highly toxigenic for fumonisins production. Analysis of molecular variance (AMOVA) revealed 54% of the variation in the AFLP patterns of 63 isolates was due to the differences between Fusarium species, and 46% was due to differences between the strains within a species.  相似文献   

19.
Banana fruits were studied over a six-month period in order to determine the incidence of species of the Fusarium genus and assess their potential pathogenicity. The 72 samples studied were commercially available in Italy and Spain, where they were brought from Panama, Ecuador and Canary Islands. Among the species detected in the fruits, Fusarium semitectum var. majus Wollenw. was predominant, followed by F. moniliforme Sheld., F. solani (Mart.) Appel & WoUenw., F. oxysporum Schlecht., F. proliferatum (Matsushima) Nirenberg, F. graminearum Schw., F. camptoceras WoUenw. &C Reinking, F. subglutinans (WoUenw. & Reinking) Nelson et al., F. dimerum Penzig in Sacc, F. acuminatum EU. & Ev., and F. equiseti (Corda) Sacc. Fusarium proliferatum had never been reported to occur as contaminating fungi in banana fruits to date. Fusarium subglutinans, F. acuminatum and F. graminearum were found to be the most markedly pathogenic of all. The lack of noticeable differences in relation to the incidence of the different species isolated from the samples indicates that the mycoflora found is typical of this fruit and does not depend on its origin.  相似文献   

20.
Aims: To quantify and to compare the occurrence of Fusarium species in maize kernels and stalk pieces, to analyse mycotoxins in kernels and maize crop residues, to evaluate two approaches to obtain kernel samples and to compare two methods for mycotoxin analyses. Methods and Results: The occurrence of Fusarium species in maize kernels and stalk pieces from a three‐year maize hybrid trial and 12 kernel samples from grower’s fields was assessed. Nine to 16 different Fusarium species were detected in maize kernels and stalks. In kernels, F. graminearum, F. verticillioides and F. proliferatum were the most prevalent species whereas in stalks, they were F. equiseti, F. proliferatum and F. verticillioides. In 2006, 68% of the kernel samples exceeded the recommended limit for pig feed for deoxynivalenol (DON) and 42% for zearalenone (ZON), respectively. Similarly, 75% of the samples from grower’s fields exceeded the limits for DON and 50% for ZON. In maize crop residues, toxin concentrations ranged from 2·6 to 15·3 mg kg?1 for DON and from 0·7 to 7·4 mg kg?1 for ZON. Both approaches to obtain maize kernel samples were valid, and a strong correlation between mycotoxin analysis using ELISA and LC‐MS/MS was found. Conclusions: The contamination of maize kernels, stalk pieces and remaining crop residues with various mycotoxins could pose a risk not only to animal health but also to the environment. With the hand‐picked sample, the entire Fusarium complex can be estimated, whereas combine harvested samples are more representative for the mycotoxin contents in harvested goods. Significance and Impact of the Study: This is the first multi‐year study investigating mycotoxin contamination in maize kernels as well as in crop residues. The results indicate a high need to identify cropping factors influencing the infection of maize by Fusarium species to establish recommendations for growers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号