首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of PGE2 binding sites in four subcellular fractions (F1–F4) from porcine fundic mucosa obtained by gradient centrifugation was examined. Binding of HPGE2 to fractions F2–F4 was specific, dissociable, saturable and pH dependent. A significant degree of specific binding was not evident in F1. The Scatchard analysis of binding to F2 and F3 revealed heterogenous populations of binding sites with similar dissociation constants but greater concentrations of binding sites than was evident in the initial 30,000 xg homogenate protein. A single class of low affinity binding sites was evident in F4. The ratio of total: nonspecific binding was approximately equal in F2 and F3. The ratio was considerably smaller in F4. The activity of 5' nucleotidase the marker enzyme for plasma membranes followed this ratio. There was no correlation between the binding ratio and marker enzyme activities for mitochondrial membranes and endoplasmic reticulum. These data suggest that high affinity PGE2 binding sites occur predominantly on the plasma membrane from gastric mucosal tissue.  相似文献   

2.
The distribution of PGE2 binding sites in four subcellular fractions (F1-F4) from porcine fundic mucosa obtained by gradient centrifugation was examined. Binding of 3HPGE2 to fractions F2-F4 was specific, dissociable, saturable and pH dependent. A significant degree of specific binding was not evident in F1. The Scatchard analysis of binding to F2 and F3 revealed heterogenous populations of binding sites with similar dissociation constants but greater concentrations of binding sites than was evident in the initial 30,000 xg homogenate protein. A single class of low affinity binding sites was evident in F4. The ratio of total: nonspecific binding was approximately equal in F2 and F3. The ratio was considerably smaller in F4. The activity of 5' nucleotidase the marker enzyme for plasma membranes followed this ratio. There was no correlation between the binding ratio and marker enzyme activities for mitrochondrial membranes and endoplasmic reticulum. These data suggest that high affinity PGE2 binding sites occur predominantly on the plasma membrane from gastric mucosal tissue.  相似文献   

3.
Prostaglandins E1 and E2 are specifically bound by particulate fractions from bovine adrenal medulla. The subcellular localization of these binding sites has been investigated by comparing their distribution in subcellular fractions obtained by differential and gradient centrifugation to those of marker enzymes for various organelles. Prostaglandin E2 binding sites were purified about 16-fold with respect to the homogenate in a fraction which was highly enriched in plasma membranes on the basis of the activities of the marker enzymes acetylcholinesterase and calcium-dependent ATPase, which were both purified by about 12-fold in this fraction. The plasma membrane fraction contained relatively low activities of marker enzymes for mitochondria (monoamine oxidase), lysosomes (acid phosphatase), endoplasmic reticulum (glucose-6-phosphatase), Golgi (galactosyl transferase) and chromaffin granule membranes (dopamine β-hydroxylase). The only other fractions enriched in prostaglandin E2 binding sites were those for the endoplasmic reticulum and the Golgi, in which the binding sites were purified about 4-fold and 7-fold, respectively. This is probably due mainly to contamination with plasma membranes, since calcium-dependent ATPase and acetylcholinesterase were each purified to a similar extent in these two fractions. These data suggest that the high-affinity prostaglandin E2 binding sites of the adrenal medulla are localized primarily on the plasma membranes of the medullary cells.  相似文献   

4.
Binding of biologically active 3H-PGE2 to particulate fractions of porcine gastrointestinal mucosa and muscle was investigated. Specific binding activity was detected in the 2500 xg and 30,000 xg sedimentation fractions of mucosa from esophagus, fundus, antrum, duodenum, ileum and colon, as well as in serosal muscle taken from the antrum, ileum, and colon. Optimal binding (> 40 fmol/mg protein) was observed in the 30,000 xg fraction of fundic mucosa incubated at pH 5.0. The characteristics of 3H-PGE2 binding were variable in the remainder of the gastrointestinal tract although binding in these tissues was significantly less (0.2 to 15 fmol/mg protein) than that observed in the fundic mucosa. These data suggest that the cellular and/or subcellular site of PG binding is not uniform throughout the gastrointestinal tract. In fundic mucosa removal of the surface epithelial layer by scraping did not significantly alter the total binding activity for PGE. This result suggests that in gastric secretory mucosa optimal binding activity for PGE2 occurs within the gastric pits deep to the surface epithelium.  相似文献   

5.
6.
In the present study we have investigated the macromolecular nature of porcine oxyntic mucosal PGE2 binding sites and the involvement of specific functional groups in the binding interaction. Incubation of oxyntic mucosal membranes with DNAse or RNAse did not influence binding. Phospholipase A2 was strongly inhibitory while phospholipases C and D exerted variable effects. Trypsinzation of the membranes also reduced binding and this reduction was prevented by addition of soybean trypsin inhibitor. Neuraminidase and β-galactosidase treatments resulted in variable increases in binding activity. The increase in binding was due to an increase in binding affinity and/or binding site concentration. Protein modifying reagents acetic anhydride, N-ethylmaleimide and mercaptoethanol all reduced binding. These results suggest the importance of protein, lipid and carbohydrate components of the membrane in the binding interaction between PGE2 and its binding site. The ability of mercaptoethanol and N-methylmaleimide to reduce binding suggest the involvement of both sulphydryl and disulphide groups in the PGE2 binding reaction.  相似文献   

7.
8.
The presence of prostaglandins (PGs) was determined in gastric juice obtained from 3 conscious dogs, provided with a chronic gastric fistula. Outputs of acid (mequiv min?1) and PGs (pg min?1) were measured in gastric secretions stimulated by pentagastrin (100 or 200 ng kg?1min?1). Prostaglandin activity was estimated, after extraction and thin layer chromatography, by radioimmuno-assay of the PGB formed by treatment with alkali. Tritiated PGs were added to gastric juice for the purpose of correcting for PGs recovery. Using this method, the minimum mass of PGB which could be satisfactorily distinguished from zero was 25 pg. Prostaglandins A2 and E2 were present in pentagastrin-activated gastric secretions and averaged (mean ± SE, n = 8) 200.7 ± 18.1 and 260.1 ± 18.0 pg min?1 respectively. The identity of PGA2 and PGE2 was confirmed by gas liquid chromatography combined with mass spectrometry. The amount of PGE2 converted to PGA2 during extraction, separation and conversion procedures was estimated from the amount of [3H] PGA2 found when only [3H] PGE2 had been added to a sample of gastric juice and averaged 14.5% ± 2.0. Our preliminary results support the possibility that PGE2 and PGA2 may be of physiological importance in the regulation of canine gastric secretions.  相似文献   

9.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

10.
Prostaglandins E1 (PGE1) and E2 (PGE2) have been coupled with the amine group of phosphatidylethanolamine (PE) by means of dicyclohexylcarbodiimide. These complexes basically mimic the relaxant and contractile effects of the corresponding free prostaglandins (PGs) on various smooth muscle preparations, but exhibit a delayed onset of action and a lower affinity for the PG receptors. The complexes are comparable with the free, parent PGs, in their intrinsic activities. The same holds true for the effects on blood pressure and on the motility of the uterus . The PGE2-PE complex is hydrolysed to release obviously free PGE2 by cell-free homogenates prepared from various tissues, but not by blood plasma. The PGE2-PE complex is immunologically indistinguishable from the free PGE2.  相似文献   

11.
Rat adipocyte plasma membranes sacs have been shown to be a sensitive and specific system for studying prostaglandin binding. The binding of prostaglandin E1 and prostaglandin A1 increases linearly with increasing protein concentration, and is a temperature-sensitive process. Prostaglandin E1 binding is not ion dependent, but is enhanced by GTP. Prostaglandin A1 binding is stimulated by ions, but is not affected by GTP.Discrete binding sites for prostaglandin E1 and A1 were found. Scatchard plot analysis showed that the binding of both prostaglandins was biphasic, indicating two types of binding sites. Prostaglandin E1 had association constants of 4.9 · 109 1/mole and 4 · 108 1/mole, while the prostaglandin A1 association constants and binding capacities varied according to the ionic composition of the buffer. In Tris-HCl buffer, the prostaglandin A1 association constants were 8.3 · 108 1/mole and 5.7 · 107 1/mole, while in the Krebs—Ringer Tris buffer, the results were 1.2 · 109 1/mole and 8.6 · 106 1/mole.Some cross-reactivity between prostaglandin E1 and A1 was found for their respective binding sites. Using Scatchard plot analysis, it was found that a 10-fold excess of prostaglandin E1 inhibited prostaglandin A1 binding by 1–20% depending upon the concentration of prostaglandin A1 used. Prostaglandin E1 competes primarily for the A prostaglandin high-affinity binding site. Similar Scatchard analysis using a 20-fold excess of prostaglandin A1 inhibited prostaglandin E1 binding by 10–40%. Prostaglandin A1 was found to compete primarily for the E prostaglandin low-affinity receptor.All of the bound [3H]prostaglandin E1, but only 64% of the bound [3H]-prostaglandin A1 can be recovered unmetabolized from the fat cell membrane. There is no non-specific binding of prostaglandin E1, but 10–15% of prostaglandin A1 binding to adipocyte membranes is non-specific. Using a parallel line assay to measure relative affinities for the E binding site, prostaglandin E1 > prostaglandin A2 > prostaglandin F. Prostaglandin E2 and 16,16-dimethyl prostaglandin E2 were equipotent with prostaglandin E1, while other prostaglandins had lower relative affinities. 7-Oxa-13-prostynoic acid does not appear to antagonize prostaglandin activity in adipocytes at the level of the receptor.  相似文献   

12.
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may by related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

13.
The specific binding of the A1 adenosine receptor ligand, [3H]CHA, was investigated in membrane fractions prepared from brains of eleven vertebrate species and ganglia of four invertebrate species. Substantial amounts of specific [3H]CHA binding sites were demonstrated in brain membranes of all vertebrate species examined; however, [3H]CHA binding sites were not detectable in nervous tissue of the invertebrate species studied. The densities of [3H]CHA binding sites in vertebrate brains increase in higher vertebrates. Moreover, the pharmacological characteristics of the site labeled by [3H]CHA in two divergent classes of vertebrates were similar. The broad phylogenetic distribution of A1 adenosine receptors in primitive as well as advanced vertebrate species suggests a fundamental role for adenosine in neuronal modulation.  相似文献   

14.
Six newborns with obstructive right heart lesions were examined neurologically and electroencephalographically during treatment with prostaglandin (PG) E1 or E2 given to maintain patency of the ductus arteriosus and to increase pulmonary blood flow. PG was administered intravenously or intraarterially in the aortic isthmus proximal to the ductus arteriosus. Besides a rise in arterial oxygen saturation, all patients had some sign of central nervous system involvement. The electroencephalogram showed minor changes suggestive of sedation. In addition, three patients in whom PG given intravenously presented various combinations of neurological abnormalities (“myoclonic jerks”, apnoeic spells, hiccup) of subcortical origin. Side-effects subsided after stopping the treatment anf posed no problem in the management of the patients. These findings confirm the usefulness and safety of the PG therapy and indicate that the intraaortic route of administration is preferable.  相似文献   

15.
Suckling rats were treated every 8 h by intragastric instillation of 16,16-dimethyl prostaglandin E2 (PG) from postnatal day 7 to 11. As compared to saline control treatment, PG increased the thickness of antral and corpus mucosa, the volume density of parietal cells, the mean individual parietal cell volume and pentagastrin-stimulated acid secretion at the end of the treatment. Plasma gastrin and corticosterone levels were depressed by PG while plasma thyroxine levels were unchanged. These structural and functional changes suggest PG-induced accelerated maturation of gastric mucosa.  相似文献   

16.
Acidic unfolding process of myoglobin was investigated in the presence of external ligands (azide, cyanide, fluoride and imidazole). With azide, cyanide and fluoride as ligand, myoglobin unfolds through a single exponential decay process, whereas it is not the case with imidazole. No faster decays were observed as in the case of myoglobin without external ligands. These results demonstrate the important role of iron-ligand interaction on the conformational stability of myoglobin.  相似文献   

17.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG) E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF2=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF2 was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd 1 × 10−8M. No high affinity — low capacity 3H-PGF2 sites could be demonstrated.

Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-P GE2>16 phenoxy-17,18,19,20-tetranor-PGE2=PGE2=PGE1=(15S)-15-methyl-PGE2>PGF2.  相似文献   


18.
The distribution of [3H]kainate binding sites was determined by quantitative autoradiography in three vertebrate species: rat, monkey, and human. These animals displayed a similar pattern of binding site density in the hippocampus. Highest levels were found within the stratum lucidum and moderate levels in the inner portion of the dentate gyrus molecular layer. Although the distribution is similar, there is a lower density of binding sites in the stratum lucidum of primates than in rodents. Experiments using rat brain synaptic plasma membrane fractions indicated that inclusion of Ca2+ ions results in a selective reduction in binding at the high affinity sites. The Ca2+-inhibited and Ca2+-insensitive binding sites in the rat hippocampus exhibited a similar distribution. Together, these results suggest that in a variety of mammalian species kainate receptors exhibit similar regional distributions, and that the high anf loe affinity kainate binding sites also exhibit similar regional distributions.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

19.
Levuglandin E2 (LGE2), a γ-ketoaldehyde produced by rearrangement of the prostaglandin endoperoxide PGH2 under the aqueous conditions of its biosynthesis, causes extensive intermolecular crosslinking of ovalbumin at pH 6 or pH 7 and 37°C. The time dependence of protein oligomerization is monitored by SDS-PAGE. Effects of pH and concentration on the extent of LGE2-induced crosslinking are examined. The efficacy of LGE2 for inducing crosslinking is compared with other oxidative metabolites of arachidonic acid (AA), including the prostaglandins PGE2, PGD2, PGA2, PGB2, and PGF, as well as malondialdehyde and E-4-hydroxy-non-2-enal. LGE2 is orders of magnitude more effective in crosslinking protein than any other cyclooxygenase or lipoxygenase metabolite of AA tested.  相似文献   

20.
Rat small bowel was perfused and in the absence of biliary and pancreatic secretion. Intraluminal release of sucrase, alkaline phosphatase, aminopeptidase and enterokinase was significantly increased after administration of PG E1 and E2 1 and 5 μg/kg. This suggests a direct stimulation of the intestinal mucosa, which might be mediated through cyclic AMP ; dibutyryl cAMP significantly stimulates intraluminal release of proteins, sucrase and enterokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号