共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectopic expression of cyclin D1 but not cyclin E induces anchorage-independent cell cycle progression. 总被引:4,自引:1,他引:4 下载免费PDF全文
D Resnitzky 《Molecular and cellular biology》1997,17(9):5640-5647
Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts. 相似文献
2.
3.
4.
Cyclin E regulates the cell cycle transition from G1 to S phase and is degraded before entry into G2 phase. Here we show that RhoBTB3, a Golgi-associated, Rho-related ATPase, regulates the S/G2 transition of the cell cycle by targeting Cyclin E for ubiquitylation. Depletion of RhoBTB3 arrested cells in S phase, triggered Golgi fragmentation, and elevated Cyclin E levels. On the Golgi, RhoBTB3 bound Cyclin E as part of a Cullin3 (CUL3)-dependent RING–E3 ubiquitin ligase complex comprised of RhoBTB3, CUL3, and RBX1. Golgi association of this complex was required for its ability to catalyze Cyclin E ubiquitylation and allow normal cell cycle progression. These experiments reveal a novel role for a Ras superfamily member in catalyzing Cyclin E turnover during S phase, as well as an unexpected, essential role for the Golgi as a ubiquitylation platform for cell cycle control. 相似文献
5.
Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development 总被引:1,自引:0,他引:1
In Drosophila, the RNA helicase VASA (VAS) is required for both germ line formation and oocyte differentiation. While the murine VAS homologue is required for spermatogenesis, it is dispensable for germ line formation. The molecular basis for this apparently dual role of VAS in germ line ontogeny is, however, unclear. Recent evidence indicates that fish, like flies, employs VAS both in early and late stages of the germ line development and that there is a sex-linked differential expression of splice variants. We show here that the longer of two splice variants of zebrafish vas is transiently downregulated in the germ line around the time when the germ cells reach the developing gonad. Using transgenic vas::EGFP fish lines, which allow us to distinguish between male and female individuals, we show that the long splice variant reappears in both sexes at around day 25 and is subsequently downregulated during male gonadal development. Our data further suggest that there is a switch from maternal to zygotic expression of the long splice variant of vas as sexual dimorphic development commences. 相似文献
6.
Expression and function of Drosophila cyclin A during embryonic cell cycle progression 总被引:46,自引:0,他引:46
Cyclin proteins are thought to trigger entry into mitosis. During mitosis they are rapidly degraded. Therefore, mitosis and consequently cyclin degradation might be triggered at a time when cyclins have reaccumulated to a critical level. We cloned and sequenced a Drosophila cyclin A homolog and identified mutations in the corresponding gene. Immunofluorescent staining revealed that cyclin A accumulates in the interphase cytoplasm of cellularized embryos, but relocates to the nuclear region early in prophase and is completely degraded within metaphase. Cyclin A was expressed in dividing cells throughout development, and a functional cyclin A gene was required for continued division after exhaustion of maternally contributed cyclin A. Importantly, the timing of post cellularization divisions was not governed by the rate of accumulation or level of cyclin A. 相似文献
7.
Flow cytometry study of human cyclin B1 and cyclin E expression in leukemic cell lines: cell cycle kinetics and cell localization 总被引:10,自引:0,他引:10
Viallard JF Lacombe F Dupouy M Ferry H Belloc F Reiffers J 《Experimental cell research》1999,247(1):208-219
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression. 相似文献
8.
9.
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2. 相似文献
10.
IL-4 is emerging as a candidate cytokine for the treatment of inflammatory and autoimmune diseases. We have reported that IL-4 has anti-angiogenic activity and inhibits the growth of human umbilical vein endothelial cells (HUVEC) in response to vascular endothelial growth factor (VEGF) or fibroblast growth factor-2 (FGF-2). Cell cycle analysis of this effect revealed that IL-4 arrests the growth of FGF-2-stimulated HUVEC in G0 + G1 phases. The absence of subdiploid cells showed that it did not induce apoptosis. Growth arrest was dose-dependent, but the percentage of G0 + G1 phase cells never exceeded 85%. An immunoblot analysis demonstrated that expression of p53 and p21(Waf1) was increased and that of cyclin D1 and cyclin E decreased by IL-4. These results show that IL-4 inhibits endothelial cell growth by altering the expression of cell cycle regulatory molecules. 相似文献
11.
Fox PM Vought VE Hanazawa M Lee MH Maine EM Schedl T 《Development (Cambridge, England)》2011,138(11):2223-2234
The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry. 相似文献
12.
13.
14.
We cloned a new splicing variant of Otx2 gene, Otx2c. Otx2c lacks entire exon 4, most of the region encoding the homeodomain. More importantly, Otx2c harbors an early premature stop codon and bioinformatics analysis prefers it to be a non-protein coding RNA. In addition, this splicing variant is not simply a noise during mRNA processing, since it is mainly expressed in undifferentiated human embryonic stem cells but gradually decreased during differentiation. Therefore, we report here that a single pre-mRNA can generate both coding and non-coding RNAs through alternative splicing and this splicing activity is tightly regulated in different cell contexts. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(13):2172-2183
The F-box protein FBW7/hCDC4 is a tumor suppressor that acts as the substrate recognition component of an SCF ubiquitin ligase that targets numerous oncoproteins for proteasomal degradation. In this study, we investigated whether FBW7 is regulated by microRNAs, using a screen combining bioinformatic analysis, luciferase reporters and microRNA libraries. The ubiquitous miR-27a was identified as a major suppressor of FBW7 and in line with this, miR-27a prohibited ubiquitylation and turnover of the key FBW7 substrate cyclin E. Notably, we found that miR-27a only suppresses FBW7 during specific cell cycle phases, relieving its negative impact at the G1 to S-phase transition, prior to cyclin E protein degradation. We also demonstrate that attenuation of FBW7 by miR-27a overexpression leads to improper cell cycle progression and DNA replication stress, consistent with dysregulation of cyclin E expression. Finally, in the context of human cancer, miR-27a was discovered to be generally overexpressed in pediatric B-ALL and its expression to be inversely correlated with that of FBW7 in hyperdiploid cases of B-ALL. These data provide evidence for microRNA-mediated regulation of FBW7, and highlight the role of miR-27a as a novel factor fine-tuning the periodic events regulating cell cycle progression. 相似文献
16.
Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. 总被引:14,自引:7,他引:14 下载免费PDF全文
E A Musgrove J A Hamilton C S Lee K J Sweeney C K Watts R L Sutherland 《Molecular and cellular biology》1993,13(6):3577-3587
Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression. 相似文献
17.
Cardiovascular disease is associated with a multitude of pathophysiologic conditions, including vascular smooth muscle cell (VSMC) proliferation in response to vessel injury. Diethylstilbestrol (DES) was previously prescribed for at-risk pregnancies to prevent abortion, miscarriage, and premature labor. Our aim in this study was to elucidate the effects and molecular mechanism of DES on proliferation and cell cycle progression of platelet-derived growth factor (PDGF)-BB-stimulated rat aortic VSMCs. Treating the cells with DES (1-7 μM) dramatically inhibited cell proliferation in a dose-dependent manner without any cytotoxic effects. In addition, DES blocked cell cycle progression from PDGF-BB-stimulated cells, which we found was related to down-regulation of the cell cycle regulatory factors, cyclin D1, and cyclin E. Our data demonstrate that DES inhibits rat aortic VSMC proliferation and cell cycle progression through regulation of cell cycle-related proteins. Therefore, our observations may explain, in part, the mechanistic basis underlying the therapeutic effects of DES in cardiovascular disease. 相似文献
18.
COX-2 expression and cell cycle progression in human fibroblasts 总被引:4,自引:0,他引:4
Cyclooxygenase-2 (COX-2) is continuously expressed in mostcancerous cells where it appears to modulate cellular proliferation andapoptosis. However, little is known about the contribution oftransient COX-2 induction to cell cycle progression or programmed celldeath in primary cells. In this study we determined whether COX-2regulates proliferation or apoptosis in human fibroblasts. COX-2 mRNA, protein, and prostaglandin E2(PGE2) were not detected in quiescent cells but wereexpressed during the G0/G1 phase of the cellcycle induced by serum. Inhibition of COX-2 did not alter G0/G1 to S phase transition or induceapoptosis at concentrations that diminished PGE2.Addition of interleukin-1 to serum enhanced COX-2 expression andPGE2 synthesis over that by serum alone but had no effecton the progression of these cells into S phase. Furthermore,platelet-derived growth factor drove the G0 fibroblasts into the cell cycle without inducing detectable levels of COX-2 orPGE2. Collectively, these data show that transient COX-2expression in primary human fibroblasts does not influence cell cycle progression. 相似文献
19.
20.
C P Tan K K McKee D H Weinberg T MacNeil O C Palyha S D Feighner D L Hreniuk L H Van Der Ploeg D J MacNeil A D Howard 《FEBS letters》1999,451(2):137-141
The primary hormonal regulator of pigmentation is melanocyte stimulating hormone derived from proopiomelanocortin by proteolytic processing. The melanocortin-1 receptor serves a key role in the regulation of pigmentation. We describe the identification of the first intron within a melanocortin receptor. A new melanocortin-1 receptor isoform, generated by alternative mRNA splicing, encodes an additional 65 amino acids at the predicted intracellular, C-terminal tail of the melanocortin-1 receptor. When expressed in heterologous cells, the new spliced form of the melanocortin-1 receptor (melanocortin-1 receptor B) appears pharmacologically similar to the non-spliced melanocortin-1 receptor. Melanocortin-1 receptor B is expressed in testis, fetal heart and melanomas. 相似文献