首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the superfamily of ATP-binding cassette (ABC) transporters, also known as traffic ATPases, which are implicated in the movement of various substrates. Recent studies indicate that CFTR and other closely related ABC transporters are also implicated in the movement of cellular ATP. This is the subject of current controversy. Therefore, evidence for the movement of cellular nucleotides by expression of CFTR and related molecules, as well as the potential significance of ATP-permeable channels in cell physiology, are reviewed in this study. The hypothesis is thus forwarded for the improper delivery of cellular ATP to the extracellular milieu by a dysfunctional CFTR, to be a relevant factor in the onset of cystic fibrosis.  相似文献   

2.
ABC transporters: bacterial exporters.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review.  相似文献   

3.
The ATP-binding-cassette transmembrane transporters (ABC transporters) known from vertebrates belong to four major subfamilies: (1) the P- glycoproteins (Pgp); (2) the cystic fibrosis transmembrane conductance regulators (CFTR); (3) the Tap proteins encoded with the major histocompatibility complex of mammals; and (4) the peroxisomal membrane proteins. Both Pgp and CFTR have a structure suggesting a past internal gene duplication; a phylogenetic analysis indicated that these duplications occurred independently, while an independent tandem gene duplication occurred in the case of the Tap family. Both the Pgp and Tap proteins show evidence of relationship to bacterial ABC transporters lacking internal duplication, and both are significantly more closely related to the HlyB and MsbA families of transporters from purple bacteria than they are to ABC transporters from nonpurple bacteria. The simplest hypothesis to explain this observation is that eukaryotic Pgp and Tap genes are descended from a mitochondrial gene or genes that were subsequently translocated to the nuclear genome. The Pgp genes of eukaryotes are characterized by a remarkable degree of convergent evolution between the ATP-binding cassettes of their N- terminal and C-terminal halves, whereas no such convergence is seen between the two halves of CFTR genes or between the duplicated Tap genes. Exon 13 of the CFTR gene, which encodes a putative regulatory domain not found in other ABC transporters apart from CFTR, showed high levels of both synonymous and nonsynonymous difference in comparisons among different mammalian species, suggesting that this region is a mutational hot spot.   相似文献   

4.
Lack of Conventional ATPase Properties in CFTR Chloride Channel Gating   总被引:3,自引:0,他引:3  
CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mm). Higher concentrations of vanadate (10 mm) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for this transition state analogue is considerably different than that of other ABC transporters. Received: 18 September 1995/Revised: 9 January 1996  相似文献   

5.
ABC transporters are a large superfamily of integral membrane proteins involved in ATP-dependent transport across biological membranes. Members of this superfamily play roles in a number of phenomena of biomedical interest, including cystic fibrosis (CFTR) and multidrug resistance (P-glycoprotein, MRP). Most ABC transporters are predicted to consist of four domains, two membrane-spanning domains and two cytoplasmic domains. The latter contain conserved nucleotide-binding motifs. Attempts to determine the structure of ABC transporters and of their separate domains are in progress but have not yet been successful. To aid structure determination and possibly learn more about the domain boundaries, we set out to model nucleotide-binding domains (NBDs) of ABC transporters based on a known structure. Previous attempts to predict the 3D structure of NBDs were based solely on sequence similarity with known nucleotide-binding folds. We have analyzed the sequences of a number of nucleotide-binding domains with the algorithm THREADER, developed by D.T. Jones, and a possible fold was found in the structure of aspartate aminotransferase. We present a model for the N-terminal NBD of CFTR, based on the large domain of the A chain of aspartate aminotransferase. The model is refined using multiple sequence alignment, secondary structure prediction, and 3D-1D profiles. Our model seems to be in good agreement with known properties of nucleotide-binding domains and has some appealing characteristics compared with the previous models. Proteins 30:275–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Bacterial zinc transporters and regulators   总被引:7,自引:0,他引:7  
Klaus Hantke 《Biometals》2001,14(3-4):239-249
Zn2+ homeostasis in bacteria is achieved by export systems and uptake systems which are separately regulated by their own regulators. Three types of Zn2+ export systems that protect cells from high toxic concentrations of Zn2+ have been identified: RND multi-drug efflux transporters, P-type ATPases, and cation-diffusion facilitators. The RND type exporters for Zn2+ are only found in a few gram-negative bacteria; they allow a very efficient export across the cytoplasmic membrane and the outer membrane of the cell. P-type ATPases and cation-diffusion facilitators belong to protein families that are also found in eukaryotes. The exporters are regulated in bacteria by MerR-like repressor/activators or by ArsR-like repressors. For the high-affinity uptake of Zn2+, several binding-protein-dependent ABC transporters belonging to one class have been identified in different bacteria. Zn2+ ABC transporters are regulated by Zur repressors, which belong to the Fur protein family of iron regulators. Little is known about low-affinity Zn2+ uptake under zinc-replete conditions. One known example is the phosphate uptake system Pit, which may cotransport Zn2+ in Escherichia coli. Similarly, the citrate-metal cotransporter CitM in Bacillus subtilis may help to supply Zn2+.  相似文献   

7.
ATP-binding cassette (ABC) transporters mediate transport of diverse substrates across membranes. We have determined the quaternary structure and functional unit of the recently discovered ECF-type (energy coupling factor) of ABC transporters, which is widespread among prokaryotes. ECF transporters are protein complexes consisting of a conserved energizing module (two peripheral ATPases and the integral membrane protein EcfT) and a non-conserved integral membrane protein responsible for substrate specificity (S-component). S-components for different substrates are often unrelated in amino acid sequence but may associate with the same energizing module. Here, the energizing module from Lactococcus lactis was shown to form stable complexes with each of the eight predicted S-components found in the organism. The quaternary structures of three of these complexes were determined by light scattering. EcfT, the two ATPases (EcfA and EcfA'), and the S-components were found to be present in a 1:1:1:1 ratio. The complexes were reconstituted in proteoliposomes and shown to mediate ATP-dependent transport. ECF-type transporters are the smallest known ABC transporters.  相似文献   

8.
Maintaining adequate intracellular levels of transition metals is fundamental to the survival of all organisms. While all transition metals are toxic at elevated intracellular concentrations, metals such as iron, zinc, copper, and manganese are essential to many cellular functions. In prokaryotes, the concerted action of a battery of membrane-embedded transport proteins controls a delicate balance between sufficient acquisition and overload. Representatives from all major families of transporters participate in this task, including ion-gradient driven systems and ATP-utilizing pumps. P-type ATPases and ABC transporters both utilize the free energy of ATP hydrolysis to drive transport. Each of these very different families of transport proteins has a distinct role in maintaining transition metal homeostasis: P-type ATPases prevent intracellular overloading of both essential and toxic metals through efflux while ABC transporters import solely the essential ones. In the present review we discuss how each system is adapted to perform its specific task from mechanistic and structural perspectives. Despite the mechanistic and structural differences between P-type ATPases and ABC transporters, there is one important commonality: in many clinically relevant bacterial pathogens, transporters of transition metals are essential for virulence. Here we present several such examples and discuss how these may be exploited for future antibacterial drug development.  相似文献   

9.
Diffels JF  Seret ML  Goffeau A  Baret PV 《Biochimie》2006,88(11):1639-1649
We have compiled all known heavy metal transporters of the yeast Saccharomyces cerevisiae and identified their orthologs in four other species spanning the entire Hemiascomycete phylum. The 213 transporters belong to 27 distinct phylogenetic families distributed within the three classes: channels, secondary porters (permeases) and transport ATPases. They are present in all cellular membranes: plasma membranes, vacuoles, mitochondria, endoplasmic reticulum, nucleus, Golgi and various cytoplasmic vesicles. The major physiological heavy metals transported are: iron, manganese, zinc, copper, arsenite and cadmium. The major subfamilies that comprise the highest number of transporters are Siderophore-Iron Transporters (SIT) and CT2 (conjugated ABC transporters). They transport heavy metals (iron or cadmium, respectively) conjugated to organic chelators such as siderophores or glutathione. Both subfamilies are considerably amplified in the yeast Yarrowia lipolytica. The pattern of expansion and restriction of the subfamilies during the evolution of the different species is highly variable. The phylogenetic trees of the major transporters subfamilies distinguish homogenous clusters of transporters suggesting that possible different physiological or mechanistic functions evolved independently. We also validated the use of the Hemiascomycetes heavy metal transporters for identification of orthologs transporters in the pathogenic Basidiomycetes Cryptococcus neoformans.  相似文献   

10.
11.
Structure and function of facilitative sugar transporters.   总被引:4,自引:0,他引:4  
Sugar transporters from one group of the major facilitator superfamily of membrane transporters. A conserved common central pore structure lies at the heart of these transporters and diverse functionality is brought about by alterations to this pore or regions associated with it. Recent mutagenesis studies of sugar transporters within the framework of tenable models for the distantly related lactose permease argue that this model is a good paradigm for other members of the major facilitator superfamily.  相似文献   

12.
细菌的肽转运蛋白包括3种,寡肽转运蛋白(Oligopeptide permease,Opp)、二肽转运蛋白(Dipeptide permease,Dpp)和二/三肽转运蛋白(Di-and tripeptide permease,Dtp)。Opp和Dpp属于ABC型超家族(ATP-binding cassette superfamily)转运蛋白,利用ATP水解产生的能量实现底物转运。对Opp和Dpp研究最多的是胞外肽结合蛋白OppA和DppA,它们起着最初识别与结合底物的重要作用。Dtp属于主要协助转运蛋白超家族(Major facilitator superfamily,MFS),与质子进行底物共转运。细菌肽转运蛋白的晶体结构解析结合大量的生化数据分析,使得人们对其转运机制有了深入的了解。本文对这三种肽转运蛋白的研究进展分别进行综述。  相似文献   

13.
Lewis VG  Ween MP  McDevitt CA 《Protoplasma》2012,249(4):919-942
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.  相似文献   

14.
Due to their ability to extrude structurally dissimilar cytotoxic drugs out of the cell, multidrug transporters are able to reduce the cytoplasmic drug concentration, and, hence, are able to confer drug resistance on human cancer cells and pathogenic microorganisms. This review will focus on the molecular properties of two bacterial multidrug transporters, the ATP-binding cassette transporter LmrA and the proton motive force-dependent major facilitator superfamily transporter LmrP, which each represent a major class of multidrug transport proteins encountered in pro- and eukaryotic cells. In spite of the structural differences between LmrA and LmrP, the molecular bases of their drug transport activity may turn out to be more similar than might currently appear.  相似文献   

15.
Catalysis of glutamate transport across cell membranes and coupling of the concentrative transport to sodium, proton, and potassium gradients are processes fundamental to organisms in all kingdoms of life. In bacteria, glutamate transporters participate in nutrient uptake, while in eukaryotic organisms, the transporters clear glutamate from the synaptic cleft. Even though glutamate transporters are crucial to the viability of many life forms, little is known about their structure and quaternary organization. In particular, the subunit stoichiometry of these polytopic integral membrane proteins has not been unequivocally defined. Determination of the native molecular mass of membrane proteins is complicated by their lability in detergent micelles and by their association with detergent and/or lipid molecules. Here we report the purification of glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus in a monodisperse, detergent-solubilized state. Characterization of both transporters either by chemical cross-linking and mass spectrometry or by size-exclusion chromatography and in-line laser light scattering, refractive index, and ultraviolet absorption measurements shows that the transporters have a trimeric quaternary structure. Limited proteolysis further defines regions of primary structure that are exposed to aqueous solution. Together, our results define the subunit stoichiometry of high-affinity glutamate transporters from B. caldotenax and B. stearothermophilus and localize exposed and accessible elements of primary structure. Because of the close amino acid sequence relationship between bacterial and eukaryotic transporters, our results are germane to prokaryotic and eukaryotic glutamate and neutral amino acid transporters.  相似文献   

16.
Traffic ATPases constitute a superfamily of transporters that include prokaryotic permeases and medically important eukaryotic proteins, such as the multidrug resistance P-glycoprotein and the cystic fibrosis gene product. We present a structure-function analysis of a member of this superfamily, the prokaryotic histidine permease, using mutations generated both in vitro and in vivo, and assaying several biochemical functions. The analysis supports a previously predicted structural model and allows the assignment of specific functions to several predicted structural features. Mutations in the secondary structure features which form the nucleotide-binding pocket in general cause the loss of ATP binding activity. Mutations in the helical domain retain ATP binding activity. Several mutations have been identified which may affect the signaling mechanism between ATP hydrolysis and membrane translocation. We relate our findings to those emerging from the recent biochemical and genetic analyses of cystic fibrosis mutations.  相似文献   

17.
The general properties of ABC transporters, from bacteria to humans, including a brief history of their initial discovery, are considered. ABC transporters, one of the largest protein super families and vital for human health, are in toto responsible for the transport of an enormous range of molecules from ions (CFTR) or anti-tumour drugs (Pgp/MDR) to large polypeptides. Nevertheless, all ABC transporters are powered by a conserved ATPase the ABC or NBD domain, using in all probability the same basic mechanism of action for the hydrolysis of ATP and its coupling to the transport process. Based on recent high resolution structures of several NBDs and an intact transporter, a model of how dimers of these important proteins function will be discussed, with particular attention to HlyB, the ABC transporter from E. coli.  相似文献   

18.
Chloride absorption and bicarbonate secretion are vital functions of epithelia, as highlighted by cystic fibrosis and diseases associated with mutations in members of the SLC26 chloride-bicarbonate exchangers. Many SLC26 transporters (SLC26T) are expressed in the luminal membrane together with CFTR, which activates electrogenic chloride-bicarbonate exchange by SLC26T. However, the ability of SLC26T to regulate CFTR and the molecular mechanism of their interaction are not known. We report here a reciprocal regulatory interaction between the SLC26T DRA, SLC26A6 and CFTR. DRA markedly activates CFTR by increasing its overall open probablity (NP(o)) sixfold. Activation of CFTR by DRA was facilitated by their PDZ ligands and binding of the SLC26T STAS domain to the CFTR R domain. Binding of the STAS and R domains is regulated by PKA-mediated phosphorylation of the R domain. Notably, CFTR and SLC26T co-localize in the luminal membrane and recombinant STAS domain activates CFTR in native duct cells. These findings provide a new understanding of epithelial chloride and bicarbonate transport and may have important implications for both cystic fibrosis and diseases associated with SLC26T.  相似文献   

19.
CFTR is a member of the ABC (ATP binding cassette) superfamily of transporters. It is a multidomain membrane protein, which utilizes ATP to regulate the flux of its substrate through the membrane. CFTR is distinct in that it functions as a channel and it possesses a unique regulatory R domain. There has been significant progress in understanding the molecular basis for CFTR activity as an ATPase. The dimeric complex of NBD structures seen in prokaryotic ABC transporters, together with the structure of an isolated CF-NBD1, provide a unifying molecular template to model the structural basis for the ATPase activity of CFTR. The dynamic nature of the interaction between the NBDs and the R domain has been revealed in NMR studies. On the other hand, understanding the mechanisms mediating the transmission of information from the cytosolic domains to the membrane and the channel gate of CFTR remains a central challenge.  相似文献   

20.
Proteins belonging to the ATP-binding cassette superfamily couple ATP binding and hydrolysis at conserved nucleotide-binding domains (NBDs) to diverse cellular functions. Most superfamily members are transporters, while cystic fibrosis transmembrane conductance regulator (CFTR), alone, is an ion channel. Despite this functional difference, recent results have suggested that CFTR shares a common molecular mechanism with other members. ATP binds to partial binding sites on the surface of the two NBDs, which then associate to form a NBD dimer, with complete composite catalytic sites now buried at the interface. ATP hydrolysis and gamma-phosphate dissociation, with the loss of molecular contacts linking the two sides of the composite site, trigger dimer dissociation. The conformational signals generated by NBD dimer formation and dissociation are transmitted to the transmembrane domains where, in transporters, they drive the cycle of conformational changes that translocate the substrate across the membrane; in CFTR, they result in opening and closing (gating) of the ion-permeation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号