首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of disaccharide fragments of dermatan sulfate   总被引:2,自引:0,他引:2  
Condensation of crystalline methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, provided 54% of methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-alpha-L-idopyranosyluronate)-beta-D-galactopyranoside . The use of methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl trichloroacetimidate)uronate as glycosyl donor, in the presence of trimethylsilyl triflate, improved the yield to 68%. Regioselective opening of the benzylidene group with sodium cyanoborohydride followed successively by O-sulfation with the sulfur trioxide-trimethylamine complex, saponification, catalytic hydrogenolysis and selective N-acetylation gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(alpha-L-idopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside. Condensation of methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-D-glucopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, gave methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyluronate)-beta-D-galactopryano side in 85% yield. The sequence already described then gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside.  相似文献   

2.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

3.
J Zhang  Y Zhu  F Kong 《Carbohydrate research》2001,336(3):229-235
A tetrasaccharide, alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-L-Rhap, the common and major structure of the repeating unit of the O-antigenic polysaccharide of a strain of Klebsiella pneumoniae and Pseudomonas holci was synthesized as its methyl and octyl glycosides. Selective 3-O-glycosylation of allyl alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate gave allyl 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->3)-alpha-L-rhamnopyranoside (3). Benzoylation, deallylation, and trichloroacetimidation afforded 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl-(1-->3)-2,4-di-O-benzoyl-alpha-L-rhamnopyranosyl trichloroacetimidate (6). Self condensation of 3,4-di-O-benzoyl-beta-L-rhamnopyranose 1,2-methyl orthoester or 1,2-octyl orthoester gave methyl or octyl 2-O-acetyl-3,4-di-O-benzoyl-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-benzoyl-alpha-L-rhamnopyranoside (16 or 17), and subsequent selective deacetylation gave the disaccharide acceptor (18 or 19). Coupling of 6 with 18 (or 19), followed by deacylation in ammonia-saturated methanol, produced the target tetrasacharide.  相似文献   

4.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

5.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

6.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

7.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

8.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

9.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

10.
N-Acetyl-1-thiomuramoyl-L-alanyl-D-isoglutamine and some lipophilic analogs were synthesized from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]- alpha-D-glucopyranoside (1). O-Debenzoylation of 2, derived from 1 by oxidation, gave 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]-D-glucopyranose (3). Condensation of the alkoxy-tris(dimethylamino)phosphonium chloride (4), formed from 3 by the action of carbon tetrachloride and tris(dimethylamino)phosphine, with potassium thioacetate afforded 2-acetamido-1-S-acetyl-2-deoxy-4,6-O-isopropylidene-3-O-[ D-1-(methoxycarbonyl)ethyl]-1-thio-beta-D-glucopyranose (8). Coupling of the acid 9, obtained from 8 by hydrolysis and subsequent S-acetylation, with the methyl ester of L-alanyl-D-isoglutamine gave N-[2-O-(2-acetamido-1-S-acetyl-2,3-dideoxy-4,6-O- isopropylidene-1-thio-beta-D-glucopyranose-3-yl)-D-lactoyl]-L-alan yl-D- isoglutamine methyl ester (10), which was converted, via O-deisopropylidenation, S-deacetylation, and de-esterification, into the N-acetyl-1-thiomuramoyl dipeptide. Condensation of 11 (derived from 10 by S-deacetylation) and of 12 (obtained from 10 by S-deacetylation and de-esterification) with various acyl chlorides yielded the corresponding 1-S-acyl-N-acetylmuramoyl-L-alanyl-D-isoglutamine derivatives, which were converted into the desired, lipophilic 1-thiomuramoyl dipeptides by cleavage of the isopropylidene group. Condensation of 11 with the alkyl bromides yielded the 1-S-alkyl derivatives, which were also converted, via O-deisopropylidenation and de-esterification, into the corresponding 1-S-alkylmuramoyl dipeptides. The biological activities were examined in guinea-pigs and mice.  相似文献   

11.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

12.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

13.
A chitobiose derivative, methyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-3,6 - di-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside, was derived from the corresponding N-acetyl derivative and this was converted into the glycosyl bromide (5). Glycosidation reaction between 5 and methyl 3,4,6-tri-O-benzyl-alpha-D-mannopyranoside in the presence of silver trifluoromethanesulfonate gave a beta-D-linked trisaccharide derivative. Replacement of the N,N-phthaloyl group by acetyl groups resulted in a product that was converted into methyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-O -(2- acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----2)-3,4,6- tri-O- benzyl-alpha-D-mannopyranoside (11) by use of a few reaction steps. The 4(3)-hydroxyl group of 11 was methanesulfonylated, and the product subjected to SN2 replacement with acetate anion, to give the D-galactosamine-containing trisaccharide derivative (12). After basic hydrolysis of 12, the 4(3)-hydroxyl group was sulfated, and all benzyl groups were removed by hydrogenolysis, giving methyl O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-(1----4)-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----2)-alpha-D-mannopyranosid e monosodium salt, the methyl alpha-glycoside derivative of the peripheral trisaccharide sequence of the pituitary glycoprotein hormone lutropin.  相似文献   

14.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

15.
A facile approach towards the synthesis of 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-2-acetamido-2-deoxy-beta-D-glucopyra nos ide, 2-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-2-acetamido-2-deoxy-alpha-D-galactopyranoside, 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)- (1----6)-alpha-D-mannopyranoside, and 4-nitrophenyl O-alpha-L-fucopyranosyl-(1----3)-O-(2-acetamido-2-deoxy-beta-D-glucop yra nosyl)-(1----6)-beta-D-galactopyranoside has been accomplished through the development and use of methyl 3,4-O-isopropylidene-2-O-(4-methoxybenzyl)-1-thio-beta-L-fucopyranoside as the glycosyl donor.  相似文献   

16.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

17.
Methyl 3,4,6-tri-O-benzyl-beta-D-mannopyranoside (2), methyl 2,3-O-isopropylidene-beta-D-mannopyranoside (11), and 4-nitrophenyl 2,3-O-isopropylidene-beta-D-mannopyranoside (12) were each condensed with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide (1) in the presence of mercuric cyanide, to give after deprotection, methyl 2-(5) and 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (15), and 4-nitrophenyl 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (20), respectively. A similar condensation of 11 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha-D- mannopyranosyl bromide (21) and 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha D-mannopyranosyl bromide (25), followed by removal of protecting groups, afforded methyl O-alpha-D-mannopyranosyl-(1----2)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (24) and methyl O-alpha-D-mannopyranosyl-(1----6)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (28), respectively. Bromide 25 was also condensed with 12 to give a trisaccharide derivative which was deprotected to furnish 4-nitrophenyl O-alpha-D-mannopyranosyl-(1----6)-alpha-D-mannopyranosyl-(1----6)-beta-D - mannopyranoside (31). Phosphorylation of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside and 15 with diphenyl phosphorochloridate in pyridine gave the 6'-phosphates 6 and 16, respectively. Hydrogenolysis of the benzyl and phenyl groups provided methyl 2-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (7) and methyl 6-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (17) after treatment with Amberlite IR-120 (Na+) cation-exchange resin. The structures of compounds 5, 7, 15, 17, 20, 24, 28, and 31 were established by 13C-n.m.r. spectroscopy.  相似文献   

18.
p-Nitrophenyl 2-O-benzyl-4,5-O-cyclohexylidene-beta-D-mannopyranoside (4) was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide. The resulting, protected disaccharide was converted into p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-4-O-benzoyl-2-O- benzyl-beta-D-mannopyranoside (8), which was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide to give p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-O -[2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1----6)]-4-O-benzoyl-2-O -benzyl-beta-D-mannopyranoside (9) in 75% yield. Conversion of the p-nitrophenyl group followed by deprotection then yielded the title compound, whose structure was confirmed by 1H- and 13C-n.m.r. spectroscopy.  相似文献   

19.
Condensation of 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide with benzyl 2-acetamido-3,6-di-O-benzyl-alpha-D-glucopyranoside in dichloromethane-N,N-dimethylformamide, in the presence of tetraethylammonium bromide, diisopropylethylamine, and molecular sieve (halide ion-catalyzed reaction), gave benzyl 2-acetamido-3,6-di-O-benzyl-2 deoxy-4-O-(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-alpha-D-glucopyranoside in crystalline form in 82% yield. Hydrogenolysis of the benzyl groups gave the title disaccharide, in crystalline form in 90% yield, which was characterized by a crystalline peracetylated alpha-D derivative.  相似文献   

20.
The synthesis of the oligosaccharides beta-D-Xylp-(1----2)-beta-D-Manp-OMe (12), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-OMe (17), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)]-beta-D-Manp+ ++-OMe (21), and beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)] [alpha-D-Manp-(1----6)]-beta-D-Manp-OMe (25) is described. Methyl 3-O-benzyl-4,6-O-isopropylidene-beta-D-mannopyranoside (6) was prepared from the corresponding glucoepimer (4) by oxidation, followed by stereoselective reduction. Condensation of 6 with 2,3,4-tri-O-acetyl-alpha-D-xylopyranosyl bromide in the presence of mercuric cyanide gave a 1:9 mixture of methyl 3-O-benzyl-4,6-O-isopropylidene-2-O-(2,3,4- tri-O-acetyl-alpha- (7a) and -beta-D-xylopyranosyl)-beta-D-mannopyranoside (7), and then 7 was converted into the acetylated disaccharide-glycoside 11. Regioselective mannosylation, with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide, at position 6 of deisopropylidenated 7 (8), using mercuric bromide as a promoter, afforded the trisaccharide-glycoside derivative 13, which was transformed into the acetylated trisaccharide-glycoside 16. The disaccharide derivative 10, obtained from 8, and the trisaccharide derivative 15, obtained from 13, were glycosylated at position 3 with O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)trichloroacetimidate (19), using trimethylsilyl triflate as a promoter, giving rise to acetylated tri- (20) and tetra-saccharide (24) derivatives, respectively. O-Deacetylation of 11, 16, 20, and 24 gave 12, 17, 21, and 25, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号