首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

2.
小麦几丁质酶基因的异种表达及其功能鉴定   总被引:3,自引:0,他引:3  
几丁质酶参与植物的发育及防卫反应,并与人类疾病发生有关.文章研究了小麦几丁质酶基因Wch2经根癌农杆菌介导的烟草瞬间表达和转基因拟南芥的稳定表达,Western杂交及酶活测定证实,瞬间表达的小麦几丁质酶分子量约30 kD,具有降解几丁质多聚物的功能;Wch2在转入拟南芥后表达量高,尖孢镰刀菌接种的鉴定表明,表达Wch2的转基因植株的抗病性显著高于表达绿色荧光蛋白的对照植株.这些结果说明Wch2的异种表达,可用于植物抗病基因工程,以增强植物的抗病性.  相似文献   

3.
We cloned a complete cDNA encoding rye seed chitinase-c, designated RSC-c, by rapid amplification of cDNA end and PCR procedures. The cDNA of RSC-c consists of 1,018 nucleotides and includes an open reading frame encoding a polypeptide of 266 amino acid residues. A recombinant RSC-c was produced by expression in Escherichia coli Origami(DE3) and purified. rRSC-c had almost the same chitinase activity toward glycolchitin and antifungal activity against Trichoderma sp. as the authentic RSC-c did. RSC-c mutants were subsequently constructed and characterized with respect to their chitinase and antifungal activities. Mutation of Glu67 to Gln completely abolished the chitinase activity and diminished the antifungal activity. Considerable decreases in both activities were observed in the mutations of Trp72 and Ser120 to Ala, and Glu89 to Gln. The roles of these residues in the catalytic event of RSC-c are discussed.  相似文献   

4.
Chitinases help plants defend themselves against fungal attack, and play roles in other processes, including development. The catalytic modules of most plant chitinases belong to glycoside hydrolase family 19. We report here x-ray structures of such a module from a Norway spruce enzyme, the first for any family 19 class IV chitinase. The bi-lobed structure has a wide cleft lined by conserved residues; the most interesting for catalysis are Glu113, the proton donor, and Glu122, believed to be a general base that activate a catalytic water molecule. Comparisons to class I and II enzymes show that loop deletions in the class IV proteins make the catalytic cleft shorter and wider; from modeling studies, it is predicted that only three N-acetylglucosamine-binding subsites exist in class IV. Further, the structural comparisons suggest that the family 19 enzymes become more closed on substrate binding. Attempts to solve the structure of the complete protein including the associated chitin-binding module failed, however, modeling studies based on close relatives indicate that the binding module recognizes at most three N-acetylglucosamine units. The combined results suggest that the class IV enzymes are optimized for shorter substrates than the class I and II enzymes, or alternatively, that they are better suited for action on substrates where only small regions of chitin chain are accessible. Intact spruce chitinase is shown to possess antifungal activity, which requires the binding module; removing this module had no effect on measured chitinase activity.  相似文献   

5.
Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani.  相似文献   

6.
Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, a novel gene Ltp 3F1 encoding an antifungal protein from wheat (Sumai 3) was subcloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation followed by gel permeation chromatography. Molecular phylogeny analyses of wheat Ltp 3F1 gene showed a strong identity to other plant LTPs. Predicted three-dimensional structural model showed the presence of 6 α-helices and 9 loop turns. The active site catalytic residues Gly30, Pro50, Ala52 and Cys55 may be suggested for catalyzing the reaction involved in lipid binding. SDS–PAGE analysis confirmed the production of recombinant fusion protein. The LTP fusion protein exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae. Gene cassette with cyanamide hydratase (cah) marker and Ltp 3F1 gene was constructed for genetic transformation in tobacco. Efficient regeneration was achieved in selective media amended with cyanamide. Transgenic plants with normal phenotype were obtained. Results of PCR and Southern, Northern and Western hybridization analyses confirmed the integration and expression of genes in transgenic plants. Experiments with detached leaves from transgenic tobacco expressing Ltp 3F1 gene showed fungal resistance. Due to the innate potential of broad-spectrum antifungal activity, wheat Ltp 3F1 gene can be used to enhance resistance against fungi in crop plants.  相似文献   

7.
Maize ChitA chitinase is composed of a small, hevein‐like domain attached to a carboxy‐terminal chitinase domain. During fungal ear rot, the hevein‐like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization of truncated ChitA (ChitA ΔN), which lacks the hevein‐like domain. ChitA ΔN and a mutant form (ChitA ΔN‐EQ) were expressed and purified; enzyme assays showed that ChitA ΔN activity was comparable to the full‐length enzyme. Mutation of Glu62 to Gln (ChitA ΔN‐EQ) abolished chitinase activity without disrupting substrate binding, demonstrating that Glu62 is directly involved in catalysis. A crystal structure of ChitA ΔN‐EQ provided strong support for key roles for Glu62, Arg177, and Glu165 in hydrolysis, and for Ser103 and Tyr106 in substrate binding. These findings demonstrate that the hevein‐like domain is not needed for enzyme activity. Moreover, comparison of the crystal structure of this plant class IV chitinase with structures from larger class I and II enzymes suggest that class IV chitinases have evolved to accommodate shorter substrates.  相似文献   

8.
A cDNA encoding rye seed chitinase-a (RSC-a) was cloned by rapid amplification of cDNA ends and PCR procedures. It consists of 1,191 nucleotides and encodes an open reading frame of 321 amino acid residues. Recombinant RSC-a (rRSC-a) was produced in the oxidative cytoplasm of Escherichia coli Origami(DE3) in a soluble form by inducing bacteria at a low temperature (20 degrees C). Purified rRSC-a showed properties similar to the original enzyme from rye seeds in terms of chitinase activity toward a soluble substrate, glycolchitin, and an insoluble substrate, chitin beads, in chitin-binding ability to chitin, and in antifungal activity against Trichoderma sp. in vitro. rRSC-a mutants were subsequently produced and purified by the same procedures as those for rRSC-a. Mutation of Trp23 to Ala decreased the chitinase activity toward both substrates and impaired the chitin-binding ability. Furthermore, the antifungal activity of this mutant was weakened with increasing of the NaCl concentration in the culture medium. Complete abolishment of both activities was observed upon the mutation of Glu126 to Gln. The roles of these residues in both activities are discussed.  相似文献   

9.
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β‐(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)2–5 detected by high‐performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)3‐5. On the basis of structure‐based multiple‐sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site‐directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.  相似文献   

10.
To evaluate the anti-pathogen activity of chitinases, we developed a new method for measuring the lytic activity, and investigated the correlation of the lytic activity with the enzymatic properties by using four chitinase isozymes, Chitinases E, F, H1 and G, which had been purified from yam tubers by column chromatography. Chitinases E, F and H1 had high lytic activity against the plant pathogen, Fusarium oxysporum, but Chitinase G did not. Chitinase E, which is the family 19 chitinase, was similar to Chitinases F and G in its antigenecity, but not to Chitinase H1 or H2. Chitinases H1 and H2 were recognized by the anti-Bombyx mori chitinase antibody, suggesting that Chitinases H1 and H2 are family 18 chitinases like B. mori chitinases. Chitinases E, F and H1 had two optimum pH ranges of 3-4 and 7.5-9 toward glycolchitin, but Chitinase G had only one optimum pH value of 5. Chitinases E, F and H1 had higher affinity to the polymer substrate, glycolchitin, than Chitinase G. These results suggest that the lytic activity of plant chitinases may be related to the chitin affinity and probably to the characteristic optimum pH value, or two values, but not related to its classification. The correlation of the lytic activity of a chitinase isozyme with its elicitor specificity is also discussed.  相似文献   

11.
Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. Chitinase Chit42 from Trichoderma atroviride PTCC5220 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin binding domain (ChBD). We have produced a chimeric chitinase with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Serratia marcescens Chitinase B. The fusion of ChBD improved the affinity to crystalline and colloidal chitin and also the enzyme activity of the chimeric chitinase when compared with the native Chit42. The chimeric chitinase showed higher antifungal activity toward phytopathogenic fungi.  相似文献   

12.
We investigated the effect of treating soft wheat seeds (Triticum aestivum L.) with two Pseudomonas bacteria strains, isolated from earthworm coprolites, showing a significant antifungal and growth-promoting action in preliminary screening on the activity of guaiacol-dependant peroxidase under phytopathogenic load in the presence of Bipolaris sorokiniana (Sacc.) Shoemaker as a mechanism for inducing plant resistance to the pathogen. We established a statistically significant decrease (P < 0.05) in root rot disease incidence and severity during bacterization, which is indicative both of antifungal activity of the used bacterial isolates and of their successful colonizing the rhizosphere of wheat plants. We noted a response of free and weakly bound peroxidase of wheat plants to infection with B. sorokiniana: the enzyme activity increased during pathogenesis. Bacterization also increased peroxidase activity in plant leaves and roots, the greatest differences from non-bacterized plants being observed in wheat roots in the presence of the pathogen. We detected a direct link between peroxidase activity in wheat roots and leaf tissues in the absence of the pathogen and the feedback between peroxidase activity and plant infestation by the root rot pathogen. In the presence of the phytopathogen, there is a lack of correlation between peroxidase activity in wheat roots and leaves, and there is a shift of activity towards its increase in roots, which plays an important role in the development of systemic resistance against the root rot pathogen that penetrates into plants through the roots and root collar.  相似文献   

13.
The structure-activity relationships of l-phenylpyrrolidine-2,5-dione derivatives were investigated on Sclerotinia sclerotiorum by the agar dilution method. In addition, several representative compounds were tested for antimicrobial spectra in vitro with 15 pathogenic microbes and for foliage protection activity in green house tests with rice blast, rice brown spot, rice sheath blight and kidney bean stem rot. It was found that 3,5-dihalo-substituents on the benzene moiety are essential to high antifungal activity against Sclerotinia sclerotiorum. Generally, l-(3′,5′-dihalophenyl)pyrrolidine-2,5-diones are active against Corticiaceae, Dematiaceae, Pleosporaceae and Sclerotiniaceae, especially active against Sclerotinia sclerotiorum and Botrytis cinerea (the conidia form of Sclerotinia fuckeliana). N-(3,5-Dichlorophenyl)itaconimide showed a peculiarly broad antimicrobial spectrum. In green house tests, these compounds showed high activity against rice brown spot, rice sheath blight and kidney bean stem rot. Results of green house tests on the above-mentioned diseases correlate fairly well with those of in vitro tests.  相似文献   

14.
Plant growth-promoting rhizobacterial (PGPR) strains were isolated from different agro-ecosystems of Tamil Nadu, India, and were tested for their efficacy against the sheath rot pathogen Sarocladium oryzae under in vitro, glasshouse and field conditions. Vigour and a relative performance index (RPI) were used to assay the growth promotion and antagonistic activity of Pseudomonas strains against S. oryzae under in vitro conditions. The results revealed the significant performance by strains Pf1, TDK1 and PY15 compared to other strains. Further, the combination of Pseudomonas strains Pf1, TDK1 and PY15 was more effective in reducing sheath rot disease in rice plants compared to individual strains under glasshouse and field conditions. Quantitative and native polyacrylamide gel electrophoresis (PAGE) analysis of peroxidase (PO), polyphenol oxidase (PPO) and chitinase activity in rice plants showed an increased accumulation of defence enzymes in the treatment with a combination of Pf1, TDK1 and PY15 compared to the treatment with individual strains and untreated controls. The present study revealed the probable influence of antagonism, plant growth promotion and induced systemic resistance (ISR) by the mixture of Pseudomonas bioformulations in enhancing the disease resistance in rice plants against sheath rot disease.
Duraisamy SaravanakumarEmail:
  相似文献   

15.
Duc C  Nentwig W  Lindfeld A 《PloS one》2011,6(10):e25014
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.  相似文献   

16.
Lin FP  Chen HC  Lin CS 《IUBMB life》1999,48(2):199-204
Site-directed mutagenesis was used to explore the roles of amino acid residues involved in the activity of chitinase from Aeromonas caviae. Kinetic parameters for 4-methylumbelliferyl-N,N'-diacetyl-chitobiose or 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and mutant chitinases. Chitinases with the mutations E315D (or Q) and D391E (or N) were severely impaired and had dramatically decreased kcat. However, the effect of the these mutations on the Km values were different. The function of the carboxyl group of Asp313 was partially replaced by the amide of Asn when the 4-methylumbelliferyl-N,N',N"-triacetylchitotriose substrate was used. Results indicated that Asp313, Glu315, and Asp391 might be the best candidates for the catalytic residues of chitinase A from Aeromonas caviae.  相似文献   

17.
We have identified a chitinase with antifungal activity in the bulbs of the plant Urginea indica(Indian squill) and purified it about 26-fold. The purified preparation contained a Mr 29 kDa protein that was an active growth inhibitor of the fungal pathogens Fusarium oxysporum and Rhizoctonia solani in an in vitro assay. Amino acid sequence analysis of the Mr 29 kDa protein revealed it to be highly homologous to the family 19 glycoside hydrolases, which are known to possess chitinase activity. The U. indica chitinase lacked a cysteine-rich N-terminal domain (characteristic of class I chitinases) and contained a conserved motif indicative of the signature 1 of family 19 glycoside hydrolases. It shared a approximately 70% sequence identity with the 26 kDa endochitinase of Hordeum vulgare, a typical class II chitinase of family 19. The five cysteines in the partial sequence of the Mr 29 kDa chitinase were found to be identical in location to five of the seven cysteines present in the catalytic domain of the H. vulgare enzyme. The molecular weight, the lack of an N-terminal cysteine-rich sequence, and the striking identity to the H. vulgare endochitinase suggest that the Mr 29 kDa U. indica protein is a putative class II chitinase. The antifungal activity is presumably mediated through the chitinolytic activity of the Mr 29 kDa protein.  相似文献   

18.
Aims:  To characterize the volatile antifungal compound produced by Oxyporus latemarginatus EF069 and to examine in vitro and in vivo fumigation activity of the fungus.
Methods and Results:  An antifungal volatile-producing strain, O. latemarginatus EF069 inhibited the mycelial growth of Alternaria alternata , Botrytis cinerea , Colletotrichum gloeosporioides , Fusarium oxysporum f. sp. lycopersici , and Rhizoctonia solani by mycofumigation. An antifungal volatile compound was isolated from the hexane extract of wheat bran–rice hull cultures of O. latemarginatus EF069 by repeated silica gel column chromatography and identified as 5-pentyl-2-furaldehyde (PTF). The purified PTF inhibited mycelial growth of R . solani in a dose-dependent manner. The mycofumigation with solid cultures of EF069 also reduced effectively the development of postharvest apple decay caused by B. cinerea and Rhizoctonia root rot of moth orchid caused by R. solani .
Conclusions:  Oxyporus latemarginatus EF069 showed in vitro and in vivo fumigation activity against plant pathogenic fungi by producing 5-pentyl-2-furaldehyde.
Significance and Impact of the Study:  Oxyporus latemarginatus EF069 producing an antifungal volatile compound may be used as a biofumigant for the control of fungal plant diseases.  相似文献   

19.
Investigation of the crude extracellular chitinase of Bacillus sp. 739, an antagonist of phytopathogenic fungi, discerned a relationship between the chitinase and antifungal activities of this bacterium. Purified chitinase lost its ability to inhibit the growth of micromycetes. The antagonistic (antifungal) activity of crude chitinase was found to be located in a low-molecular-weight fraction of the enzyme, which does not possess chitinase activity. Both crude and purified chitinase were able to lyse the cell walls of intact mycelium. Accordingly, it may be inferred that the antagonistic activity of Bacillus sp. 739 against micromycetes is largely determined by low-molecular-weight nonenzymatic substances whereas the role of chitinase is to utilize chitin, which is ubiquitously present in soil.  相似文献   

20.
Chitinases are enzymes that hydrolyze the N-acetylglucosamine polymer chitin, and they occur in diverse plant tissues over a broad range of crop and noncrop species. The enzymes may be expressed constitutively at low levels but are dramatically enhanced by numerous abiotic agents (ethylene, salicylic acid, salt solutions, ozone, UV light) and by biotic factors (fungi, bacteria, viruses, viroids, fungal cell wall components, and oligosaccharides). Different classes of plant chitinases are distinguishable by molecular, biochemical, and physicochemical criteria. Thus, plant chitinases may differ in substrate-binding characteristics, localization within the cell, and specific activities. Because chitin is a structural component of the cell wall of many phytopathogenic fungi, extensive research has been conducted to determine whether plant chitinases have a role in defense against fungal diseases. Plant chitinases have different degrees of antifungal activity to several fungi in vitro. In vivo, although rapid accumulation and high levels of chitinases (together with numerous other pathogenesis-related proteins) occur in resistant tissues expressing a hypersensitive reaction, high levels also can occur in susceptible tissues. Expression of cloned chitinase genes in transgenic plants has provided further evidence for their role in plant defense. The level of protection observed in these plants is variable and may be influenced by the specific activity of the enzyme, its localization and concentration within the cell, the characteristics of the fungal pathogen, and the nature of the host-pathogen interaction. The expression of chitinase in combination with one or several different antifungal proteins should have a greater effect on reducing disease development, given the complexities of fungal-plant cell interactions and resistance responses in plants. The effects of plant chitinases on nematode development in vitro and in vivo are worthy of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号