首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

2.
Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In the jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, EC 5.3.99.6) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession no.: AY708383), which was 1044 bp long, with a 747-bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multicopy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis of jasmonates. The text was submitted by the authors in English.  相似文献   

3.
Incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn (Zea mays L.) hydroperoxide dehydrase led to the formation of an unstable allene oxide derivative, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid. Further conversion of the allene oxide yielded two major products, i.e. alpha-ketol 12-oxo-13-hydroxy-9(Z),15(Z)-octadecadienoic acid, and 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA). 12-Oxo-PDA was formed from allene oxide by two different pathways, i.e. spontaneous chemical cyclization, leading to racemic 12-oxo-PDA, and enzyme-catalyzed cyclization, leading to optically pure 12-oxo-PDA. The allene oxide cyclase, a novel enzyme in the metabolism of oxygenated fatty acids, was partially characterized and found to be a soluble protein with an apparent molecular weight of about 45,000 that specifically catalyzed conversion of allene oxide into 9(S),13(S)-12-oxo-PDA.  相似文献   

4.
Jasmonates are derived from oxygenated fatty acids (oxylipins) via the octadecanoid pathway and are characterized by a pentacyclic ring structure. They have regulatory functions as signaling molecules in plant development and adaptation to environmental stress. Recently, we solved the structure of allene oxide cyclase 2 (AOC2) of Arabidopsis thaliana, which is, together with the other three AOCs, a key enzyme in the biosynthesis of jasmonates, in that it releases the first cyclic and biologically active metabolite -- 12-oxo-phytodienoic acid (OPDA). On the basis of models for the bound substrate, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, and the product, OPDA, we proposed that a conserved Glu promotes the reaction by anchimeric assistance. According to this hypothesis, the transition state with a pentadienyl carbocation and an oxyanion is stabilized by a strongly bound water molecule and favorable pi-pi interactions with aromatic residues in the cavity. Stereoselectivity results from steric restrictions to the necessary substrate isomerizations imposed by the protein environment. Here, site-directed mutagenesis was used to explore and verify the proposed reaction mechanism. In a comparative analysis of the AOC family from A. thaliana involving enzymatic characterization, in vitro import, and transient expression of AOC-enhanced green fluorescent protein fusion proteins for analysis of subcellular targeting, we demonstrate that all four AOC isoenzymes may contribute to jasmonate biosynthesis, as they are all located in chloroplasts and, in concert with the allene oxide synthase, they are all able to convert 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid into enantiomerically pure cis(+)-OPDA.  相似文献   

5.
Allene oxide cyclase (EC ) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5'-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13S enantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.  相似文献   

6.
The primary structure of acetohydroxy acid isomeroreductase from Arabidopsis thaliana was deduced from two overlapping cDNA. The full-length cDNA sequence predicts an amino acid sequence for the protein precursor of 591 residues including a putative transit peptide of 67 amino acids. Comparison of the A. thaliana and spinach acetohydroxy acid isomeroreductases reveals that the sequences are conserved in the mature protein regions, but divergent in the transit peptides and around their putative processing site.  相似文献   

7.
利用RT-PCR和RACE相结合的方法,从长春花中克隆了丙二烯氧化物合酶(AOS)基因。结果显示:长春花AOS基因(CrAOS)cDNA全长为2 118bp,包括5′和3′非翻译区,polyA尾和一个长1 638bp的开放阅读框,其基因组中不含内含子;CrAOS基因编码的蛋白含545个氨基酸。多重比对表明CrAOS蛋白与其他的AOS蛋白具有较高的相似性,CrAOS蛋白序列中含有AOS家族应有的保守氨基酸残基。Southern杂交表明:CrAOS基因在长春花中为低拷贝。qRT-PCR结果显示:CrAOS在各个组织均有表达但表达量存在差异,在老叶中最高,在幼花中表达最低。对长春花幼苗进行不同处理,结果表明:伤害、低温、甲基茉莉酸、乙烯利处理等可使CrAOS基因表达量显著提高,水杨酸处理对基因表达影响不大。  相似文献   

8.
Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.  相似文献   

9.
The induction of a chloroplast-localized 13-lipoxygenase (13-LOX) in passion fruit leaves in response to methyl jasmonate (MeJa) was previously reported. Since allene oxide synthase (AOS) is a key cytochrome P450 enzyme in the oxylipin pathway leading to AOS-derived jasmonates, the results above led in turn to an investigation of AOS in our model plant. Spectrophotometric assays showed that 24 h exposure of MeJa caused a high increase in 13-hydroperoxy linolenic acid (13-HPOT) metabolizing activity in leaf tissue. Western analysis using polyclonal antibodies against tomato AOS strongly indicate that, at least a part of the 13-HPOT metabolizing capacity can be attributed to AOS activity. We cloned the cDNA from a novel AOS encoding gene from passion fruit, named PfAOS. The 1,512 bp open reading frame of the AOS–cDNA codes a putative protein of 504 amino acid residues containing a chloroplast target sequence. Database comparisons of the deduced amino acid sequence showed highest similarity with dicot AOSs. Immunocytochemistry analysis showed the compartmentalization of AOS in chloroplasts of MeJa treated leaves, corroborating the predicted subcellular localization. Northern analysis showed that AOS gene expression is induced in leaf tissue in response to mechanical wounding and exposure to MeJa. In addition, such treatments caused an increase in papain inhibitor(s) in leaf tissue. Taken together, these results indicate that PfAOS may play an important role in systemic wound response against chewing insect attack. Furthermore, it can be useful as a tool for understanding the regulation of jasmonates biosynthesis in passion fruit.  相似文献   

10.
Herein, we cloned a full-length cDNA encoding allene oxide cyclase (AOC, EC 5.3.99.6) that is a key enzyme in jasmonates (JAs) biosynthetic pathway from Jatropha curcas L., an important plant species as its seed is the raw material for biodiesels, named as JcAOC (GenBank accession no. FJ874630). The cDNA was 924 bp in length with a complete open reading frame of 750 bp, which encoded a polypeptide of 250 amino acids including a putative signal peptide of 65 amino acid residues and a mature protein of 185 amino acids with a predicted molecular mass of 20.7 kDa and a isoelectric point of 6.24. Phylogenetic analysis indicated that JcAOC belonged to the AOC superfamily. Semi-quantitative RT-PCR analysis revealed that JcAOC mRNA was expressed in roots, stems, leaves, young seeds, endosperms, and flowers, but that the expression level was highest in leaves and lowest in seeds, and mRNA expression of JcAOC could be induced by salt stress (300 mM NaCl) and low temperature (4°C). Furthermore, the full-length coding region of JcAOC excluding signal peptide sequence was inserted into pET-30a and was successfully expressed in Escherichia coli. Overexpression of JcAOC in E. coli conferred its resistance to salt stress and low temperature.  相似文献   

11.
12.
Rice allene oxide synthase-1 mutants carrying F92L, P430A or F92L/P430A amino acid substitution mutations were constructed, recombinant mutant and wild type proteins were purified and their substrate preference, UV–vis spectra and heme iron spin state were characterized. The results show that the hydroperoxide lyase activities of F92L and F92L/P430A mutants prefer 13-hydroperoxy substrate to other hydroperoxydienoic acids or hydroperoxytrienoic acids. The Soret maximum was completely red-shifted in P430A and F92L/P430A mutants, but it was partially shifted in the F92L mutant. ESR spectral data showed that wild type, F92L and P430A mutants occupied high and low spin states, while the F92L/P430A mutant occupied only low spin state. The extent of the red shift of the Soret maximum increased as the population of low spin heme iron increased, suggesting that the spectral shift reflects the high to low transition of heme iron spin state in rice allene oxide synthase-1. Relative to wild type allene oxide synthase-1, the hydroperoxide lyase activities of F92L and F92L/P430A are less sensitive to inhibition by imidazole with (13S or 9S)-hydroperoxydienoic acid as substrate and more sensitive than wild type with (13S)-hydroperoxytrienoic acid as substrate. Our results suggest that hydroperoxydienoic acid is the preferred substrate for the hydroperoxide lyase activity and (13S)-hydroperoxytrienoic acid is the preferred substrate for allene oxide synthase activity of allene oxide synthase-1.  相似文献   

13.
The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.  相似文献   

14.
Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (α- and γ-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein.  相似文献   

15.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

16.
17.
Roesler KR  Ogren WL 《Plant physiology》1990,94(4):1837-1841
Immunoblot analysis of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase from the green alga Chlamydomonas reinhardtii indicated the presence of a single polypeptide. This observation contrasts with the Spinacea oleracea (spinach) and Arabidopsis thaliana proteins, in which two polypeptide species are generated by alternative pre-mRNA splicing. A Chlamydomonas rubisco activase cDNA clone containing the entire coding region was isolated and sequenced. The open reading frame encoded a 408 amino acid, 45 kilodalton polypeptide that included a chloroplast transit peptide. The presumptive mature polypeptide possessed 62% and 65% amino acid sequence identity, respectively, with the spinach and Arabidopsis mature polypeptides. The Chlamydomonas rubisco activase transit peptide possessed almost no amino acid sequence identity with the higher plant transit peptides. The nucleotide sequence of Chlamydomonas rubisco activase cDNA provided no evidence for alternative mRNA splicing, consistent with the immunoblot evidence for only one polypeptide. Genomic DNA blot analysis indicated the presence of a single Chlamydomonas rubisco activase gene. In the presence of spinach rubisco activase, a lower extent and rate of activation were obtained in vitro with Chlamydomonas rubisco than with spinach rubisco. We conclude Chlamydomonas rubisco activase comprises a single polypeptide which differs considerably from the higher plant polypeptides with respect to primary structure.  相似文献   

18.
19.
Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named as tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, [...] EC 5.3.99.6 [...]) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession: AY708383), which was 1044 bp long, with a 747 bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multi-copy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis ofjasmonates.  相似文献   

20.
A plant allene oxide synthase (AOS) reacting with 13S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid (13-HPOT), a lipoxygenase product of alpha-linolenic acid, provides an allene oxide which functions as an intermediate for jasmonic acid (JA) synthesis, making AOS a key enzyme regulating the JA level in plants. Although AOSs in various plants have been investigated, there is only limited information about AOSs in soybean (Glycine max). In this study, we cloned and characterized two soybean AOSs, GmAOS1 and GmAOS2, sharing 95% homology in the predicted amino acid sequences. GmAOS1 and GmAOS2 were composed of 564 and 559 amino acids respectively, with predicted N-terminal chloroplast-targeting signal peptides. Both AOSs expressed in Escherichia coli were selective for 13S-hydroperoxides of alpha-linolenic and linoleic acids, suggesting the potential of GmAOS1 and GmAOS2 to contribute to JA synthesis. GmAOS1 and GmAOS2 were expressed in leaves, stems, and roots, suggesting broad distribution in a soybean plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号