首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selection of World Wide Web sites relevant to the reviews published in this issue of Current Opinion in Neurobiology.  相似文献   

2.
Rhythmically active neuronal networks give rise to rhythmic motor activities but also to seemingly non-rhythmic behaviors such as sleep, arousal, addiction, memory and cognition. Many of these networks contain pacemaker neurons. The ability of these neurons to generate bursts of activity intrinsically lies in voltage- and time-dependent ion fluxes resulting from a dynamic interplay among ion channels, second messenger pathways and intracellular Ca2+ concentrations, and is influenced by neuromodulators and synaptic inputs. This complex intrinsic and extrinsic modulation of pacemaker activity exerts a dynamic effect on network activity. The nonlinearity of bursting activity might enable pacemaker neurons to facilitate the onset of excitatory states or to synchronize neuronal ensembles--an interactive process that is intimately regulated by synaptic and modulatory processes.  相似文献   

3.
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.  相似文献   

4.
Brain development: Integrins and the Reelin pathway   总被引:4,自引:0,他引:4  
Integrins link the extracellular matrix to the intracellular environment. They have been implicated in the Reelin pathway in cortical development. But new genetic studies have revealed that, while beta(1) integrin plays a role in formation of the basement membrane, it is not essential for neuronal migration.  相似文献   

5.
6.
7.
A selection of World Wide Web sites relevant to papers published in this issue of Current Opinion in Structural Biology.  相似文献   

8.
The general organization and function of the endomembrane system is highly conserved in eukaryotic cells. In addition, increasing numbers of studies demonstrate that normal plant growth and development are dependent on specialized tissue and subcellular-specific components of the plant membrane trafficking machinery. New approaches, including chemical genomics and proteomics, will likely accelerate our understanding of the diverse functions of the plant endomembrane system.  相似文献   

9.
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in neurobiology.  相似文献   

10.
11.
A convergence of advances in optical methods and a better understanding of the genetics of development promise to revolutionize the study of neuronal circuits and their links to behavior. One of the great challenges in systems neurobiology has been to monitor and perturb activity in populations of identified neurons in vivo. Recent work has begun to achieve this goal through a combination of modern imaging methods with genetic labeling and perturbation.  相似文献   

12.
This review outlines recent findings from human neuroimaging concerning the role of a highly interconnected network of brain areas including orbital and medial prefrontal cortex, amygdala, striatum and dopaminergic mid-brain in reward processing. Distinct reward-related functions can be attributed to different components of this network. Orbitofrontal cortex is involved in coding stimulus reward value and in concert with the amygdala and ventral striatum is implicated in representing predicted future reward. Such representations can be used to guide action selection for reward, a process that depends, at least in part, on orbital and medial prefrontal cortex as well as dorsal striatum.  相似文献   

13.
Exploiting natural peptide diversity: novel research tools and drug leads   总被引:2,自引:0,他引:2  
During the course of evolution, nature has developed a vast number of peptides in all living and past species that display an exceeding diversity of structure and biological effects, such as hormonal and enzyme-controlling activity, communication between cells, and participation in host defence. Sensitive mass spectrometric technologies have been introduced and facilitate access to new natural peptides, even in trace amounts, and allow the quantitative determination of the peptide status of cells, organs and whole organisms (peptidomics). Among the large number of new biologically active peptides identified from an increasing variety of natural sources, regulators of ion channels, chemoattractants, protease inhibitors, metabolism-related hormones, cytotoxins, and antimicrobials have been found. These novel peptides serve as research tools and have potential as diagnostic biomarkers and for the development of peptide and peptidometic drugs.  相似文献   

14.
15.
Human cooperation represents a spectacular outlier in the animal world. Unlike other creatures, humans frequently cooperate with genetically unrelated strangers, often in large groups, with people they will never meet again, and when reputation gains are small or absent. Experimental evidence and evolutionary models suggest that strong reciprocity, the behavioral propensity for altruistic punishment and altruistic rewarding, is of key importance for human cooperation. Here, we review both evidence documenting altruistic punishment and altruistic cooperation and recent brain imaging studies that combine the powerful tools of behavioral game theory with neuroimaging techniques. These studies show that mutual cooperation and the punishment of defectors activate reward related neural circuits, suggesting that evolution has endowed humans with proximate mechanisms that render altruistic behavior psychologically rewarding.  相似文献   

16.
Death by design: apoptosis, necrosis and autophagy   总被引:29,自引:0,他引:29  
Apoptosis is the principal mechanism by which cells are physiologically eliminated in metazoan organisms. During apoptotic death, cells are neatly carved up by caspases and packaged into apoptotic bodies as a mechanism to avoid immune activation. Recently, necrosis, once thought of as simply a passive, unorganized way to die, has emerged as an alternate form of programmed cell death whose activation might have important biological consequences, including the induction of an inflammatory response. Autophagy has also been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy in times of stress. Recent advances have helped to define the function of and mechanism for programmed necrosis and the role of autophagy in cell survival and suicide.  相似文献   

17.
Living cells rival computers in their ability to process external information and make complex behavioral decisions. Many of these decisions are made by networks of interacting signaling proteins. Ongoing structural, biochemical and cell-based studies have begun to reveal several common principles by which protein components are used to specifically transmit and process information. Recent engineering studies demonstrate that these relatively simple principles can be used to rewire signaling behavior in a process that mimics the evolution of new phenotypic responses.  相似文献   

18.
19.
20.
In the past year, candidates have been identified for two long-sought classes of molecules, insect odorant receptors and mammalian taste receptors. In addition, genes directing receptor gene expression and the development of specific chemosensory neurons have been described in Drosophila melanogaster and Caenorhabditis elegans. Finally, recent physiological experiments have provided new insights into the mechanisms by which chemosensory information is processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号