共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of Human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A 总被引:2,自引:0,他引:2
Han GS Sreenivas A Choi MG Chang YF Martin SS Baldwin EP Carman GM 《The Journal of biological chemistry》2005,280(46):38328-38336
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. 相似文献
2.
The Saccharomyces cerevisiae URA7-encoded CTP synthetase is phosphorylated and stimulated by protein kinases A and C. Previous studies have revealed that Ser424 is the target site for protein kinase A. Using a purified S424A mutant CTP synthetase enzyme, we examined the effect of Ser424 phosphorylation on protein kinase C phosphorylation. The S424A mutation in CTP synthetase caused a 50% decrease in the phosphorylation of the enzyme by protein kinase C and an 80% decrease in the stimulatory effect on CTP synthetase activity by protein kinase C. The S424A mutation caused increases in the apparent Km values of CTP synthetase and ATP of 20-and 2-fold, respectively, in the protein kinase C reaction. The effect of the S424A mutation on the phosphorylation reaction was dependent on time and protein kinase C concentration. A CTP synthetase synthetic peptide (SLGRKDSHSA) containing Ser424 was a substrate for protein kinase C. Comparison of phosphopeptide maps of the wild type and S424A mutant CTP synthetase enzymes phosphorylated by protein kinases A and C indicated that Ser424 was also a target site for protein kinase C. Phosphorylation of Ser424 accounted for 10% of the total phosphorylation of CTP synthetase by protein kinase C. The incorporation of [methyl-3H]choline into phosphocholine, CDP-choline, and phosphatidylcholine in cells carrying the S424A mutant CTP synthetase enzyme was reduced by 48, 32, and 46%, respectively, when compared with control cells. These data indicated that phosphorylation of Ser424 by protein kinase A or by protein kinase C was required for maximum phosphorylation and stimulation of CTP synthetase and that the phosphorylation of this site played a role in the regulation of phosphatidylcholine synthesis by the CDP-choline pathway. 相似文献
3.
The Saccharomyces cerevisiae URA7-encoded CTP synthetase is phosphorylated and stimulated by protein kinase C. We examined the hypothesis that Ser36, Ser330, Ser354, and Ser454, contained in a protein kinase C sequence motif in CTP synthetase, were target sites for the kinase. Synthetic peptides containing a phosphorylation motif at these serine residues served as substrates for protein kinase C in vitro. Ser --> Ala (S36A, S330A, S354A, and S454A) mutations in CTP synthetase were constructed by site-directed mutagenesis and expressed normally in a ura7 ura8 double mutant that lacks CTP synthetase activity. The CTP synthetase activity in extracts from cells bearing the S36A, S354A, and S454A mutant enzymes was reduced when compared with cells bearing the wild type enzyme. Kinetic analysis of purified mutant enzymes showed that the S36A and S354A mutations caused a decrease in the Vmax of the reaction. This regulation could be attributed in part by the effects phosphorylation has on the nucleotide-dependent oligomerization of CTP synthetase. In contrast, CTP synthetase activity in cells bearing the S330A mutant enzyme was elevated, and kinetic analysis of purified enzyme showed that the S330A mutation caused an elevation in the Vmax of the reaction. In vitro data indicated that phosphorylation of CTP synthetase at Ser330 affected the phosphorylation of the enzyme at another site. The phosphorylation of CTP synthetase at Ser36, Ser330, Ser354, and Ser454 residues was physiologically relevant. Cells bearing the S36A, S354A, and S454A mutations had reduced CTP levels, whereas cells with the S330A mutation had elevated CTP levels. The alterations in CTP levels correlated with the regulatory effects CTP has on the pathways responsible for the synthesis of the membrane phospholipid phosphatidylcholine. 相似文献
4.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. 相似文献
5.
The phosphorylation level of the Saccharomyces cerevisiae Cdc28 protein remained invariant under conditions that resulted in cell cycle arrest in the G1 phase and loss of Cdc28-specific protein kinase activity when the activity was assayed in vitro. These results are in contrast to the proposed regulation of the homologous Cdc2 protein kinase of Schizosaccharomyces pombe. 相似文献
6.
7.
CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] from the yeast Saccharomyces cerevisiae catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In this work, we demonstrated that CTP synthetase utilized dUTP as a substrate to synthesize dCTP. The dUTP-dependent activity was linear with time and with enzyme concentration. Maximum dUTP-dependent activity was dependent on MgCl(2) (4 mM) and GTP (K(a) = 14 microM) at a pH optimum of 8.0. The apparent K(m) values for dUTP, ATP, and glutamine were 0.18, 0.25, and 0.41 mM, respectively. dUTP promoted the tetramerization of CTP synthetase, and the extent of enzyme tetramerization correlated with dUTP-dependent activity. dCTP was a poor inhibitor of dUTP-dependent activity, whereas CTP was a potent inhibitor of this activity. The enzyme catalyzed the synthesis of dCTP and CTP when dUTP and UTP were used as substrates together. CTP was the major product synthesized when dUTP and UTP were present at saturating concentrations. When dUTP and UTP were present at concentrations near their K(m) values, the synthesis of dCTP increased relative to that of CTP. The synthesis of dCTP was favored over the synthesis of CTP when UTP was present at a concentration near its K(m) value and dUTP was varied from subsaturating to saturating concentrations. These data suggested that the dUTP-dependent synthesis of dCTP by CTP synthetase activity may be physiologically relevant. 相似文献
8.
Choi MG Kurnov V Kersting MC Sreenivas A Carman GM 《The Journal of biological chemistry》2005,280(28):26105-26112
The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent and dependent on the concentrations of choline kinase (K(m) = 27 microg/ml) and ATP (K(m) = 15 microM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSSQRRHS (V5max/K(m) = 17.5 mm(-1) micromol min(-1) mg(-1)) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway, whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Although the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHSLTRQ) containing Ser30 was a substrate (V(max)/K(m) = 3.0 mm(-1) micromol min(-1) mg(-1)) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. 相似文献
9.
10.
Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin [Alexander, K. A., Cimler, B. M., Meier, K. E., & Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113], and we have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar Km values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [gamma-32P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32P-labeled tryptic peptide was generated from phosphorylated neuromodulin. The sequence of this peptide was IQASFR. The serine in this peptide corresponds to position 41 of the entire protein, which is adjacent to or contained within the calmodulin binding domain of neuromodulin. A synthetic peptide, QASFRGHITRKKLKGEK, corresponding to the calmodulin binding domain with a few flanking residues, including serine-41, was also phosphorylated by protein kinase C. We conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmodulin to neuromodulin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Deltaura8Delta double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. 相似文献
12.
In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase. 总被引:2,自引:1,他引:2 下载免费PDF全文
Using wild-type Saccharomyces cerevisiae strains and mutants which are defective in the regulatory subunit of cyclic-AMP-dependent protein kinase (bcy1) and phosphoprotein phosphatase activity (ppd1), we demonstrated that a cyclic-AMP-dependent protein kinase phosphorylated the S. cerevisiae ribosomal protein S10 in vivo. S10 was not dephosphorylated in bcy1 or ppd1 mutants after heat shock. The phosphorylated forms of S10 were diminished during the stationary phase in bcy1 and ppd1 mutants as well as in wild-type cells. 相似文献
13.
Yu Y Sreenivas A Ostrander DB Carman GM 《The Journal of biological chemistry》2002,277(38):34978-34986
The Saccharomyces cerevisiae CKI-encoded choline kinase is phosphorylated on a serine residue and stimulated by protein kinase A. We examined the hypothesis that amino acids Ser(30) and Ser(85) contained in a protein kinase A sequence motif in choline kinase are target sites for protein kinase A. The synthetic peptides SQRRHSLTRQ (V(max)/K(m) = 10.8 microm(-1) nmol min(-1) mg(-1)) and GPRRASATDV (V(max)/K(m) = 0.15 microm(-1) nmol min(-1) mg(-1)) containing the protein kinase A motif for Ser(30) and Ser(85), respectively, within the choline kinase protein were substrates for protein kinase A. Choline kinase with Ser(30) to Ala (S30A) and Ser(85) to Ala (S85A) mutations were constructed alone and in combination by site-directed mutagenesis and expressed in a cki1Delta eki1Delta double mutant that lacks choline kinase activity. The mutant enzymes were expressed normally, but the specific activity of choline kinase in cells expressing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 44, 8, and 60%, respectively, when compared with the control. In vivo labeling experiments showed that the extent of phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 70, 17, and 83%, respectively. Phosphorylation of the S30A, S85A, and S30A,S85A mutant enzymes by protein kinase A in vitro was reduced by 60, 7, and 96%, respectively, and peptide mapping analysis of the mutant enzymes confirmed the phosphorylation sites in the enzyme. The incorporation of (3)H-labeled choline into phosphocholine and phosphatidylcholine in cells bearing the S30A, S85A, and S30A,S85A mutant enzymes was reduced by 56, 27, and 81%, respectively, and by 58, 33, and 84%, respectively, when compared with control cells. These data supported the conclusion that phosphorylation of choline kinase on Ser(30) and Ser(85) by protein kinase A regulates PC synthesis by the CDP-choline pathway. 相似文献
14.
Chang YF Martin SS Baldwin EP Carman GM 《The Journal of biological chemistry》2007,282(24):17613-17622
Phosphorylation of human CTP synthetase 1 by mammalian protein kinase C was examined. Using purified Escherichia coli-expressed CTP synthetase 1 as a substrate, protein kinase C activity was time- and dose-dependent and dependent on the concentrations of ATP and CTP synthetase 1. The protein kinase C phosphorylation of the recombinant enzyme was accompanied by a 95-fold increase in CTP synthetase 1 activity. Phosphopeptide mapping and phosphoamino acid analyses showed that CTP synthetase 1 was phosphorylated on multiple serine and threonine residues. The induction of PKC1(R398A)-encoded protein kinase C resulted in a 50% increase for human CTP synthetase 1 phosphorylation in the Saccharomyces cerevisiae ura7Delta ura8Delta mutant lacking yeast CTP synthetase activity. Synthetic peptides that contain the protein kinase C motif for Ser(462) and Thr(455) were substrates for mammalian protein kinase C, and S462A and T455A mutations resulted in decreases in the extent of CTP synthetase 1 phosphorylation that occurred in vivo. Phosphopeptide mapping analysis of S. cerevisiae-expressed CTP synthetase 1 mutant enzymes phosphorylated with mammalian protein kinase C confirmed that Ser(462) and Thr(455) were phosphorylation sites. The S. cerevisiae-expressed and purified S462A mutant enzyme exhibited a 2-fold reduction in CTP synthetase 1 activity, whereas the purified T455A mutant enzyme exhibited a 2-fold elevation in CTP synthetase 1 activity (Choi, M.-G., and Carman, G.M. (2006) J. Biol. Chem. 282, 5367-5377). These data indicated that protein kinase C phosphorylation at Ser(462) stimulates human CTP synthetase 1 activity, whereas phosphorylation at Thr(455) inhibits activity. 相似文献
15.
Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser11 总被引:3,自引:0,他引:3
The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme. 相似文献
16.
Z Y Peng W Wang S E Wilson K K Schlender R J Trumbly E M Reimann 《The Journal of biological chemistry》1991,266(17):10925-10932
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues. 相似文献
17.
Identification of a glutaminyl-tRNA synthetase mutation Saccharomyces cerevisiae 总被引:7,自引:2,他引:7 下载免费PDF全文
Saccharomyces cerevisiae glutaminyl-tRNA synthetase mutants were isolated through systematic screening of tight Gln- derivatives of a leaky glutamine auxotroph. These mutations define a single nuclear gene, GLN4. The gln4-1 mutation is specific for Gln-tRNA synthetase and shows a dosage effect in heterozygous diploids. The wild-type Gln-tRNA synthetase exhibits a Km for glutamine of 25 microM; the gln4-1 mutation increases this value 20-fold. These observations strongly suggest that GLN4 encodes the Gln-tRNA synthetase. 相似文献
18.
The CKI1-encoded choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) from Saccharomyces cerevisiae was phosphorylated in vivo on multiple serine residues. Activation of protein kinase A activity in vivo resulted in a transient increase in the phosphorylation of choline kinase. This phosphorylation was accompanied by a stimulation in choline kinase activity. In vitro, protein kinase A phosphorylated choline kinase on a serine residue with a stoichiometry (0.44 mol of phosphate/mol of choline kinase) consistent with one phosphorylation site/choline kinase subunit. The major phosphopeptide derived from the enzyme phosphorylated in vitro by protein kinase A was common to one of the major phosphopeptides derived from the enzyme phosphorylated in vivo. Protein kinase A activity was dose- and time-dependent and dependent on the concentrations of ATP (Km 2.1 microM) and choline kinase (Km 0.12 microM). Phosphorylation of choline kinase with protein kinase A resulted in a stimulation (1.9-fold) in choline kinase activity whereas alkaline phosphatase treatment of choline kinase resulted in a 60% decrease in choline kinase activity. The mechanism of the protein kinase A-mediated stimulation in choline kinase activity involved an increase in the apparent Vmax values with respect to ATP (2.6-fold) and choline (2.7-fold). Overall, the results reported here were consistent with the conclusion that choline kinase was regulated by protein kinase A phosphorylation. 相似文献
19.
20.
Banerjee DK Carrasquillo EA Hughey P Schutzbach JS Martínez JA Baksi K 《The Journal of biological chemistry》2005,280(6):4174-4181
DPM1 is the structural gene for mannosylphosphodolichol synthase (i.e. Dol-P-Man synthase, DPMS) in Saccharomyces cerevisiae. Earlier studies with cDNA cloning and sequence analysis have established that 31-kDa DPMS of S. cerevisiae contains a consensus sequence (YRRVIS141) that can be phosphorylated by cAMP-dependent protein kinase (PKA). We have been studying the up-regulation of DPMS activity by protein kinase A-mediated phosphorylation in higher eukaryotes, and used the recombinant DPMS from S. cerevisiae in this study to advance our knowledge further. DPMS catalytic activity was indeed enhanced severalfold when the recombinant protein was phosphorylated in vitro. The rate as well as the magnitude of catalysis was higher with the phosphorylated enzyme. A similar increase in the catalytic activity was also observed when the in vitro phosphorylated recombinant DPMS was assayed as a function of increasing concentrations of exogenous dolichylmonophosphate (Dol-P). Kinetic studies indicated that there was no change in the Km for GDP-mannose between the in vitro phosphorylated and control recombinant DPMS, but the Vmax was increased by 6-fold with the phosphorylated enzyme. In vitro phosphorylated recombinant DPMS also exhibited higher enzyme turnover (kcat) and enzyme efficiency (kcat/Km). SDS-PAGE followed by autoradiography of the 32P-labeled DPMS detected a 31-kDa phosphoprotein, and immunoblotting with anti-phosphoserine antibody established the presence of a phosphoserine residue in in vitro phosphorylated recombinant DPMS. To confirm the phosphorylation activation of recombinant DPMS, serine 141 in the consensus sequence was replaced with alanine by PCR site-directed mutagenesis. The S141A DPMS mutant exhibited more than half-a-fold reduction in catalytic activity compared with the wild type when both were analyzed after in vitro phosphorylation. Thus, confirming that S. cerevisiae DPMS activity is indeed regulated by the cAMP-dependent protein phosphorylation signal, and the phosphorylation target is serine 141. 相似文献