首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three low-molecular-weight glutenin subunit (LMW-GS) genes, designated LMW-Td1, LMW-Td2 and LMW-Td3, were isolated from wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of common wheat (T. aestivum). The complete nucleotide sequence lengths of LMW-Td1, LMW-Td2 and LMW-Td3 are 858, 900 and 1062 bp, respectively. LMW-Td1 and LMW-Td3 can encode proteins with 284 and 352 amino acid residues, respectively, whereas LMW-Td2 is a putative pseudogene due to the presence of 3 inframe stop codons in its C-terminal domain. The deduced protein sequences of the 3 genes share the same typical polypeptide structures with known LMW-GS genes containing 8 cysteines in the mature protein domains. LMW-Td1 was clearly distinguished from all known LMW-GS genes, and considered as a novel LMW-GS gene. Two hydrophobic motifs (i.e. PIIIL and PVIIL) were observed in the repetitive domain of LMW-Td3. Sequence comparison indicates that sequences of the 3 LMW-GS genes from this study are strongly similar to known LMW-GS genes. Our phylogenetic analysis suggests that LMW-Td1 and LMW-Td2 are homologous with genes on chromosome 1A, and LMW-Td3 is closely related to genes on chromosome 1B.  相似文献   

2.
 Genetic diversity was examined by RAPD-PCR analysis in 118 registered individuals of wild emmer wheat, Triticum dicoccoides, from a microsite at Yehudiyya, northeast of the Sea of Galilee, Israel. The test involved two climatic microniches in the open oak-park forest of Quercus ithaburensis: (1) sunny between trees and (2) shady under the trees’ canopies. Comparisons were based on 97 loci amplified by 20 oligonucleotide primers. Significant genetic differentiations were found at single-, two- and multilocus structures between the neighbouring shady and sunny niches. These DNA polymorphisms appear to be associated with microclimatic stresses. The pronounced niche-effect on the significance of linkage disequilibrium and niche-specific linkage disequilibrium may suggest that natural selection directed the two-locus associations. The structure of the multilocus associations also mainly results from natural selection, and not by chance from population subdivision, or founder effects. These findings are largely parallel to the previous allozymic results at single-locus and multilocus levels. Both the DNA and the allozymic results suggest that microclimatic selection appears to play an important role in DNA differentiation as well as in protein polymophism. Received: 30 October 1998 / Accepted: 2 November 1998  相似文献   

3.
 Genetic diversity in random amplified polymorphic DNAs (RAPDs) was studied in 110 genotypes of the tetraploid wild progenitor of wheat, Triticum dicoccoides, from 11 populations sampled in Israel and Turkey. Our results show high level of diversity of RAPD markers in wild wheat populations in Israel. The ten primers used in this study amplified 59 scorable RAPD loci of which 48 (81.4%) were polymorphic and 11 monomorphic. RAPD analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides originating from diverse ecogeographical sites in Israel and Turkey, with 95.5% of the 100 genotypes correctly classified into sites of origin by discriminant analysis based on RAPD genotyping. However, interpopulation genetic distances showed no association with geographic distance between the population sites of origin, negating a simple isolation by distance model. Spatial autocorrelation of RAPD frequencies suggests that migration is not influential. Our present RAPD results are non-random and in agreement with the previously obtained allozyme patterns, although the genetic diversity values obtained with RAPDs are much higher than the allozyme values. Significant correlates of RAPD markers with various climatic and soil factors suggest that, as in the case of allozymes, natural selection causes adaptive RAPD ecogeographical differentiation. The results obtained suggest that RAPD markers are useful for the estimation of genetic diversity in wild material of T. dicoccoides and the identification of suitable parents for the development of mapping populations for the tagging of agronomically important traits derived from T. dicoccoides. Received: 13 July 1998 / Accepted: 13 August 1998  相似文献   

4.
5.
Summary In a twin study, we have shown that wild emmer wheat, Triticum dicoccoides, the progenitor of all cultivated wheats, harbours important genetic variation (Vg) in photosynthetic characteristics. This Vg resides within and between populations and ecogeographical regions in Israel, which is the center of origin and diversity of wild emmer wheat. Here we analyzed, by univariate and multivariate methods, the significant differentiation of variation in photosynthetic characteristics of 107 genotypes from 27 populations of wild emmer in Israel, distributed in three ecogeographical regions including central, xeric (northern cold and eastern warm) marginal, and mesic (western) marginal populations. The highest photosynthetic efficiency was displayed by populations of the xeric marginal region, but most variation for photosynthetic capacity occurs between accessions within ecogeographical regions and populations. Genotypes and populations of T. dicoccoides having high photosynthetic capacity can be identified by climatic factors and isozyme markers. The identification by genetic markers, if substantiated by testcrosses, can facilitate the maximization of conservation, in situ or ex situ, and utilization of these photosynthetic genetic resources for improvement of hexaploid wheat (T. aestivum).  相似文献   

6.
Summary Allozymic variation in proteins encoded by 48 loci was analyzed electrophoretically in 1984 and 1985 in 137 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite in Yehudiyya, northeast of the Lake of Galilee, Israel. The test involved two climatic microniches in the open Tabor oak forest (1) sunny between trees and (2) shady under trees' canopies. Significant genetic differentiation at single-, two- and multilocus structures was found between neighboring climatic niches, which were only separated by a few meters. Our results suggest that allozyme polymorphisms in wild emmer wheat are partly adaptive, and differentiate primarily at the multilocus level by climatic factors presumably related to aridity stress.  相似文献   

7.
Seed storage-protein variation at theGlu-A1,Glu-B1 andGli-B1/Glu-B3 loci in the tetraploid wild progenitor of wheat,T. dicoccoides, was studied electrophoretically in 315 individuals representing nine populations from Jordan and three from Turkey. A total of 44 different HMW-glutenin patterns were identified, resulting from the combination of 15 alleles in the A genome and 19 in the B genome. Twenty-seven new allelic variants, 12 at theGlu-A1 locus and 15 at theGlu-B1 locus, were identified by comparing the mobilities of their subunits to those previously found in bread and durum wheats. The novel variants include six alleles at theGlu-A1 locus showing both x and y subunits. The genes coding for the 1Bx and 1By subunits showed no or very little (3%) inactivity, the 1Ax gene showed a moderate degree (6.3%) of inactivity whereas the gene coding for lAy showed the highest degree of inactivity (84.8%). A high level of polymorphism was also present for the omega- and gamma-gliadins and LMW-glutenin subunits encoded by genes at the linkedGli-B1 andGlu-B3 loci (19 alleles). Some Jordanian accessions were found to contain omega-gliadin 35, gamma-gliadin 45, and LMW-2 also present in cultivated durum wheats and related to good gluten viscoelasticity. The newly-discovered alleles enhance the genetic variability available for improving the technological quality of wheats. Additionally some of them may facilitate basic research on the relationship between industrial properties and the number and functionality of HMW- and LMW-glutenin subunits.  相似文献   

8.
Two stripe-rust resistance genes, YrH52 and Yr15, derived from the Israeli wild emmer wheat, Triticum dicoccoides, have been located on chromosome 1B. The main objectives of the present study were to increase marker density in the vicinity of YrH52 gene by means of AFLP, RAPD and microsatellite markers, to improve the map of another T. dicoccoides-derived stripe-rust resistance gene Yr15 using microsatellite markers, and to preliminarily discriminate these two genes. Additional 26 marker loci comprising 20 AFLPs, three RAPDs, and three microsatellites were found to be linked to YrH52 gene. An updated genetic map consisting of 45 marker loci, in the region of YrH52 gene, was constructed with a total map length of 107.7 cm. The mean interval length was 0.96 cm in the region Xgwm359b–P55M53b carrying YrH52 gene. YrH52 was bracketed by Xgwm413 (Nor1 and UBC212a) and Xgwm273a (Xgwm273d) with map distance of 1.3 and 2.7 cm from either side, respectively. Eight additional microsatellite markers were found to be linked with Yr15, and the linkage map of Yr15 gene was thus obviously improved. In the YrH52-mapping population, no crossover was detected in the interval UBC212a (Xgwm413)–Yr15Nor1, and YrH52 was located distally outside this interval. It may suggest that YrH52 is different from Yr15 even though both of them are derived from T. dicoccoides and are mapped on chromosome 1BS. The large number of molecular makers revealed in the present study would be helpful for the marker-assisted introgression of the T. dicoccoides-derived YrH52 and Yr15 stripe-rust resistance genes into elite cultivars of wheat, and the high-density map would accelerate the map-based cloning of the two genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This study investigated allele size constraints and clustering, and genetic effects on microsatellite (simple sequence repeat, SSR) diversity at 28 loci comprising seven types of tandem repeated dinucleotide motifs in a natural population of wild emmer wheat, Triticum dicoccoides, from a shade vs sun microsite in Yehudiyya, northeast of the Sea of Galilee, Israel. It was found that allele distribution at SSR loci is clustered and constrained with lower or higher boundary. This may imply that SSR have functional significance and natural constraints. Genetic factors, involving genome, chromosome, motif, and locus significantly affected SSR diversity. Genome B appeared to have a larger average repeat number (ARN), but lower variance in repeat number (sigma(ARN)(2)), and smaller number of alleles per locus than genome A. SSRs with compound motifs showed larger ARN than those with perfect motifs. The effects of replication slippage and recombinational effects (eg, unequal crossing over) on SSR diversity varied with SSR motifs. Ecological stresses (sun vs shade) may affect mutational mechanisms, influencing the level of SSR diversity by both processes.  相似文献   

10.
Microsatellite (SSR) diversity at 28 loci comprising seven types of tandem dinucleotide repeated motifs was analyzed in 105 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite in Yehudiyya, northeast of the Sea of Galilee, Israel. The study area was less than 1000 m(2) and involved 12 paired plots distributed in a mosaic pattern. Each experiment involved very close (a few meters apart), but sharply divergent, microclimatic niches in the open park forest of Tabor oak: (1) sun, between trees, and (2) shade, under tree canopy. Significant microclimatic divergence characterized many loci displaying asymmetric and non-random distribution of repeat numbers. Niche-specific and niche-unique alleles and linkage disequilibria were found in the two sub-populations. Microsatellite diversity at both single- and two-locus levels is affected by microclimatic environment. The evidence reflects effects of ecological stresses and natural selection on SSR diversity, resulting presumably in adaptive structures.  相似文献   

11.
Genetic diversity in the seed storage-proteins encoded at theGlu-A1,Glu-B1 andGli-B1/Glu-B3 loci was studied electrophoretically in 315 individuals belonging to nine populations ofT. dicoccoides from Jordan and three from Turkey. The inter- and intra-population distribution of seed storage-protein alleles at the considered loci and its link with geographical factors were investigated. Population differentiation in seed storage-proteins was in some cases very high with very weak correlations with geographic distance. Greater gene differentiation was found within and between populations which were geographically very close in Jordan than between those from Jordan and Turkey. However the distribution of alleles appeared to be non random. Samples collected from populations at locations over 900 m above sea level were less polymorphic than those collected at lower altitudes (500–700 m), whereas the relative genetic differentiation between populations was greater between those collected at higher altitudes. Seed storage-protein differentiation was significantly correlated with the altitude of the collecting sites. Although it is difficult to point out the selective pressure of altitude per se, altitude can reflect an integration of several environmental parameters. The possible adaptive value of seed storage-proteins is discussed.  相似文献   

12.
The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.  相似文献   

13.
We have analyzed the chromosomal GISH molecular banding patterns of three populations of the wild allopolyploid wheat Triticum dicoccoides in an attempt to unravel the evolutionary relationships between highly repetitive DNA fractions of T. dicoccoides and proposed diploid progenitors of the B genome. Aegilops speltoides showed almost complete affinity of its repetitive DNA to C-heterochromatin of T. dicoccoides, whereas other S-genome species demonstrated relatedness only to distal heterochromatin. This substantiates the priority of Ae. speltoides as the most similar to the wheat B-genome donor in comparison with other Sitopsis species. Using molecular banding technique with DNA of different Aegilops species as a probe permits tracing of the origin of each heterochromatin cluster. Molecular banding analysis reveals polymorphism between three wild emmer wheat populations. Comparison of molecular banding patterns with chromosomal distribution of the Ty1-copia retrotransposons, which constitute a large share of T. dicoccoides genome, makes it possible to propose that the activity of transposable elements may lie in the background of observed intraspecific polymorphism.  相似文献   

14.
Twenty eight microsatellite markers were used to analyze genetic divergence in tandem dinucleotide repeated DNA regions between two edaphic subpopulations of Triticum dicoccoides growing on the contrasting terra rossa and basalt soilsfrom a microsite at Tabigha, north of the Sea of Galilee, Israel. The terra rossa soil niche was drier and more stressful than the basalt throughout the growing season (November to May). Significant microsatellite divergence in allele distribution, repeat length, genetic diversity, and linkage disequilibria were found between emmer wheat from the two soil types over two short transects of 100 m each. Soil-specific and -unique alleles and linkage disequilibria were observed in the terra rossa and basalt subpopulations. A permutation test showed that the effects of random genetic drift were very low for the significant genetic diversity at microsatellite loci between the two subpopulations, suggesting that an adaptive molecular pattern derived by edaphic selection may act upon variation of the microsatellites. Received: 4 February 2000 / Accepted: 31 March 2000<@head-com-p1a.lf>Communicated by H.F. Linskens  相似文献   

15.
 The Yr15 gene of wheat confers resistance to the stripe rust pathogen Puccinia striiformis West., which is one of the most devastating diseases of wheat throughout the world. In the present study, molecular markers flanking the Yr15 gene of wheat have been identified using the near-isogenic-lines approach. RFLP screening of 76 probe-enzyme combinations revealed one polymorphic marker (Nor/TaqI) between the susceptible and the resistant lines. In addition, out of 340 RAPD primers tested, six produced polymorphic RAPD bands between the susceptible and the resistant lines. The genetic linkage of the polymorphic markers was tested on segregating F2 population (123 plants) derived from crosses between stripe rust-susceptible Triticum durum wheat, cv D447, and a BC3F9 resistant line carrying Yr15 in a D447 background. A 2.8-kb fragment produced by the Nor RFLP probe and a 1420-bp PCR product generated by the RAPD primer OPB13 showed linkage, in coupling, with the Yr15 gene. Employing the standard maximum-likelihood technique it was found that the order OPB13 1420 Yr15Nor1 on chromosome 1B appeared to be no less than 1000-times more probable than the closest alternative. The map distances between OPB13 1420 Yr15Nor1 are 27.1 cM and 11.0 cM for the first and second intervals, respectively. The application of marker-assisted selection for the breeding of new wheat cultivars with the stripe rust resistance gene is discussed. Received: 27 February 1997/Accepted: 7 March 1997  相似文献   

16.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. The dominant powdery mildew resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 and N9738 from wild emmer wheat (Triticum dicoccoides) in 1995, and it is still one of the most effective resistance genes in China. A high resolution genetic map for PmAS846 locus was constructed using two F2 populations and corresponding F2:3 families developed from the crosses of N9134/Shaanyou 225 and N9738/Huixianhong. Synteny between wheat and Brachypodium distachyon and rice was used to develop closely linked molecular markers to reduce the genetic interval around PmAS846. Twenty-six expressed sequence tag-derived markers were mapped to the PmAS846 locus. Five markers co-segregated with PmAS846 in the F2 population of N9134/Shaanyou 225. PmAS846 was physically located to wheat chromosome 5BL bin 0.75–0.76 within a gene-rich region. The markers order is conserved between wheat and Brachypodium distachyon, but rearrangements are present in rice. Two markers, BJ261635 and CJ840011 flanked PmAS846 and narrowed PmAS846 to a region that is collinear with 197 and 112 kb genomic regions on Brachypodium chromosome 4 and rice chromosome 9, respectively. The genes located on the corresponding homologous regions in Brachypodium, rice and barley could be considered for further marker saturation and identification of potential candidate genes for PmAS846. The markers co-segregating with PmAS846 provide a potential target site for positional cloning of PmAS846, and can be used for marker-assisted selection of this gene.  相似文献   

17.

Key Message

Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found.

Abstract

Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.  相似文献   

18.
 Geographical variation in vernalization response and narrow-sense earliness was investigated for accessions of wild emmer wheat, Triticum dicoccoides, collected in Israel. Wide variation between and within populations was observed in both characters. The analysis of vernalization response showed that 2 accessions from Tabigha were of a strong spring growth habit, and thus wild emmer wheat was classified into four types, i.e., strongly spring type, moderately spring type, moderately winter type, and strongly winter type, according to their vernalization response. Whereas winter types were frequently found in most populations except that of Tabigha, the distribution of spring types was sporadic and restricted to warmer areas. It was thus suggested that spring type in T. dicoccoides might have evolved from a winter prototype as an adaptation to warmer conditions. Within moderately winter and moderately spring types, quantitative differences in vernalization response, measured as Dof70/Dof20 and Dof20/Dof0, were observed between populations. Inter- and intra-population variation in vernalization response could be explained to some extent by the difference in growing conditions at each habitat. It was clearly indicated that environmental heterogeneity caused ecogenetic differentiation in wild emmer wheat in Israel. Wild emmer wheat also varied considerably for narrow-sense earliness, ranging from 32.9 days to 69.5 days among accessions. However, it was difficult to explain its geographical variation simply by a linear relationship with environmental factors, and a nonlinear relationship and/or unknown microgeographic heterogeneity may be responsible. Received: 18 March 1996/Accepted: 13 December 1996  相似文献   

19.
Summary Allozymic variation in proteins encoded by 47 loci was analyzed electrophoretically in 1983/4 and 1984/5 in 356 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite at Tabigha, north of the Sea of Galilee, Israel. Each year the test involved two 100-meter transects, each equally subdivided into basalt and terra rossa soil types, and comparisons were based on 16 common polymorphic loci. Significant genetic differentiation, genetic phase disequilibria, and genome organization according to soil type were found over very short distances. Our results suggest that allozyme polymorphisms in wild emmer wheat are partly adaptive, and that they differentiate at both single and multilocus structures primarily from environmental stress of such ecological factors as soil type, topography, and temporal changes, probably through aridity stress.  相似文献   

20.
Myristoyl-CoA:protein N-myristoyl transferase (NMT; EC 2.3.1.97) acylates the Gly residue abutting the N-terminal Met with a myristic acid following the removal of the Met residue in certain eukaryotic proteins, and in some cases myristoylation is essential to cell growth and survival. We report the cloning of a full-length cDNA encoding NMT from Triticum aestivum (TaNMT). The cDNA included a predicted open reading frame of 1317 nucleotides, which encoded a predicted protein of 438 amino acids containing all of the residues that are important for NMT activity. The TaNMT amino acid and nucleotide sequences were compared with NMTs from 14 other species encompassing a wide array of taxonomic groups. Among the experimentally validated NMTs, TaNMT was most similar to that of Arabidopsis thaliana. Southern blot analysis of wheat genomic DNA showed that TaNMT is encoded by a single copy gene, with one copy per haploid genome. We expressed TaNMT in Escherichia coli cells and determined that the recombinant protein possessed NMT activity, catalyzing the N-myristoylation of peptides from known or putatively myristoylated proteins from plants and animals without a strong preference for the plant peptides. TaNMT is the second experimentally validated plant NMT sequence and the first from a monocotyledonous species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号