首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phytoplankton of Lake Kinneret, a warm monomictic lake,is dominated by a Pyrrhophyta-Chlorophyta assemblage. Four stagesof succession of planktonic algae occur in the lake, startingwith thermal and chemical destratification and ending with stratification. The index of diversity of the phytoplankton communities is highduring the destratification and mixed periods. The index reachesminimal values during late summer, when the ecosystem is subjectto strong physical, chemical and biological stresses. The diversityin Lake Kinneret increases with the increase in nutrients andnot with the increase in temperature. During most of the year, the nanoplanktonic forms are in greaternumbers than the netplankton species. This fact is correlatedwith the amounts of available nutrients in the lake. The annual averages of the wet autotrophic biomass in Lake Kinneretare very high in comparison with other warm lakes. The contributionof the nanoplanktonic species to the total algal biomass isvery small during the Peridinium bloom, but represents approximatelyhalf of the total algal biomass during the rest of the year. The concentration of nutrients in the water, together with theadverse competitive effect of Peridinium on other algae, areto a large extent responsible for the composition, successionand abundance of the phytoplankton assemblages in Lake Kinneret.  相似文献   

2.
Feldberger Haussee provides a classic example of eutrophication history of hardwater lakes in the Baltic Lake District (Germany) and of changes in their algal flora during the 20th century. The lake originally was regarded as slightly eutrophic. A process of drastic eutrophication from the 1950s until the end of the 1970s caused mass developments of blue-green and green algae. A restoration program was started in the 1980s to improve the water quality of the lake using both diversion of sewage outside the catchment area, and biomanipulation by altering the fish community. This restoration program led to positive changes in the lake ecosystem. Direct effects of biomanipulation resulted in an increase of herbivorous zooplankton, a decrease of phytoplankton biomass, and an increase of water transparency. The recovery of Feldberger Haussee also may have been indirectly enhanced by an increase in nutrient sedimentation as a consequence of intensified calcite precipitation, decrease in phosphorus remobilization due to a pH-decrease, increased NIP-ratio, and recolonization of the littoral zone by macrophytes. This paper concentrates on the long term development of the phytoplankton community as a response to changes in the food web structure as well as to alterations in the chemical environment of the algae. Both are reflected in four major stages passed by the algal assemblage between 1980 and 1994: (1) From 1980-summer 1985 dense green algal populations were found indicating similar conditions as in the 1970s during the period of maximum eutrophication. (2) A diverse phytoplankton community during summer 1985–1989 showed the first effects of a recovery. (3) From 1990–1992 the phytoplankton was characterized by ungrazeable filamentous blue-green algae first of all as a response to increased herbivory of zooplankton on edible species and to increasing N/P-ratios. (4) Finally, the algal species diversity increased in 1993 and 1994 whereas the phytoplankton biomass decreased showing the success of the combined restoration measures.  相似文献   

3.
Annual Patterns in Bacterioplankton Community Variability in a Humic Lake   总被引:4,自引:0,他引:4  
Bacterioplankton community composition (BCC) was monitored in a shallow humic lake in northern Wisconsin, USA, over 3 years using automated ribosomal intergenic spacer analysis (ARISA). Comparison of ARISA profiles of bacterial communities over time indicated that BCC was highly variable on a seasonal and annual scale. Nonmetric multidimensional scaling (MDS) analysis indicated little similarity in BCC from year to year. Nevertheless, annual patterns in bacterioplankton community diversity were observed. Trends in bacterioplankton community diversity were correlated to annual patterns in community succession observed for phytoplankton and zooplankton populations, consistent with the notion that food web interactions affect bacterioplankton community structure in this humic lake. Bacterioplankton communities experience a dramatic drop in richness and abundance each year in early summer, concurrent with an increase in the abundance of both mixotrophic and heterotrophic flagellates. A second drop in richness, but not abundance, is observed each year in late summer, coinciding with an intense bloom of the nonphagotrophic dinoflagellate Peridinium limbatum. A relationship between bacterial community composition, size, and abundance and the population dynamics of Daphnia was also observed. The noted synchrony between these major population and species shifts suggests that linkages across trophic levels play a role in determining the annual time course of events for the microbial and metazoan components of the plankton.  相似文献   

4.
Employingin situ enclosures containing inocula of the lake zooplankton (mainlyDaphnia galeata, Daphnia cucullata andBosmina spp.) from a moderately eutrophic Lake Ros (Northern Poland) or large-bodiedDaphina magna, the following observations on succession of phytoplankton were made: 1) whereasD. magna could control the density of all the photoplankton size classes, the lake zooplankton could not suppress the large-sized phytoplankters or net phytoplankton; 2) the lake zooplankton was able to control the density of small algae (< 50μm), but its effect on large algae may be opposite: a promotion of net phytoplankton growth by removing small-sized algae which can out-compete net phytoplankton for limited PO4-P resources (<5μg P l−1). Since efficiency of phytoplankton density control byD. magna decreased with an increase in net phytoplankton abundance, biomanipulation could not be successful without introducing or maintaining a high population of large-bodied cladoceran species before high densities of large algae would make the control of phytoplankton inefficient.  相似文献   

5.
SUMMARY. 1. We investigate the importance of a refuge from fish predation to the abundance, species composition and seasonal succession of zooplankton. Thirty lakes representing a range of depths were sampled twice in summer for physical/chemical parameters and zooplankton community structure.
2. We define the refuge from centrarchid predators to be that space between the thermocline and the zone of anoxia. As lakes vary in rate of oxygen depletion from the hypolimnion. the refuge size and lake depth are independent: refuge size decreases during the summer period.
3. Lake depth and refuge size independently explain variation among lakes in zooplankton species composition, but seasonal community change within lakes is best predicted by loss of refuge size.
4. Refuge size also explains the substantial variation in the relative dominance of the two major daphnid species. Lakes possessing a large refuge are dominated by D. pulicaria ; those with a small refuge are dominated by the smaller, D. galeata mendotae . We suggest that lakes of intermediate refuge size, which are characterized by high species diversity, represent a more equitable balance of predation and competition.  相似文献   

6.
北京4海藻类群落结构特征与水体营养水平的研究   总被引:5,自引:0,他引:5  
高玉荣 《生态学报》1992,12(2):173-180
  相似文献   

7.
沈玉莹  程俊翔  徐力刚  李仁英  游海林  杨海 《生态学报》2023,43(24):10399-10412
2022年鄱阳湖流域发生了特大干旱事件,对鄱阳湖生态环境产生了严重影响。为揭示极端水文干旱年的鄱阳湖浮游动物群落结构特征及其主要影响因素,于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对鄱阳湖浮游动物进行了综合调查。本次调查共鉴定出浮游动物70种(轮虫40种、桡足类17种和枝角类13种),丰度和生物量范围分别为0—152.67个/L和0—1.52 mg/L。浮游动物群落结构具有较大的时空差异:在季节上,物种数夏季最多,丰度和生物量呈现夏季最高、秋季最低的特征,干旱季节的Shannon-Wiener多样性指数和优势种组成明显不同于非干旱季节;在空间上,南部湖区的物种数、丰度、生物量高于北部湖区,多样性指数在中部湖区最高、北部湖区最低。极端水文干旱年的物种数、丰度和生物量均明显低于往年同期,但空间上的差异较小。相关性分析和冗余分析结果表明,浮游动物群落结构在干旱季节和非干旱季节的主要影响因素存在明显差异,其中干旱季节浮游动物群落结构主要受水温、水位、硝态氮、氨氮等的共同影响,非干旱季节受化学需氧量和水位的影响较大。总体上,极端水文干旱使得鄱阳湖浮游动物群落结构稳定性较...  相似文献   

8.
The relationship between species diversity and the stability and production of trophic levels continues to receive intense scientific interest. Though facilitation is commonly cited as an essential underlying mechanism, few studies have provided evidence of the impact that indirect facilitation may have on diversity–ecosystem functioning relationships. In this laboratory study, we examined the effect of zooplankton species diversity on trophic structure (total algal and zooplankton biomass) and temporal stability of total zooplankton biomass. We utilized four species of pond zooplankton grown in either monoculture or in polyculture. When comparing responses in polycultures with responses averaged across monocultures, a positive effect of diversity on total zooplankton biomass was observed. This occurred as a result of positive facilitative effects among competing zooplankton. Daphnia pulex , a biomass dominant in monoculture, was negatively affected by the presence of interspecific competitors. In contrast, Diaphanosoma brachyurum , a species that performed poorly in monoculture, was strongly and positively affected by the presence of interspecific competitors, driving positive diversity effects on total zooplankton biomass. Positive temporal covariances among zooplankton were detected in several polyculture replicates, increasing temporal variability of total zooplankton biomass. However, this destabilizing effect was weak relative to effects of high biomass yields in polyculture which caused temporal biomass variability (as measured by the coefficient of variation) to be lower in polyculture relative to monocultures. Zooplankton diversity effects on total algal biomass were not detected. However, increased zooplankton diversity significantly altered the size structure of algae, increasing the relative abundance of large, grazer-resistant algae.  相似文献   

9.
The phytoplankton of the River Lujan (Buenos Aires, Argentina) was studied for a period of 18 months, together with physical and chemical variables, in relation to a pollution gradient. 167 taxa were recorded within a seasonal succession characterized by dominance of diatoms with a brief summer green algae facies. A combination of several biotic indices and multivariate analysis was employed to assess the impact of pollution on the phytoplankton community. The biotic indices used were species diversity and richness, algal quotients (green algae/diatom ratio, Centrales/Pennales ratio) and the SD succession rate index. Multivariate procedures included cluster analysis and ordination by PCA of both species and samples, stepwise discriminant analysis and multiple discriminant analysis of variance (MANOVA). Results indicate that community dynamism is attenuated at the more polluted sites, concomitant with an increased predominance of a broad-tolerance algal assemblage, co-dominated by Cyclotella meneghiniana and Nitzschia stagnorum. The changes in the community structure and dynamics described herein involved alterations in the distribution and relative proportions of the algae, rather than modifications in the basic species composition. These changes may not be readily detectable by methods which over-simplify the ecological information, such as systems of indicator species and biotic indices, designed to assess the degree of pollution. The suitability of multivariate analysis and biotic indices in river phytoplankton studies is further discussed.  相似文献   

10.
1. In a series of whole-lake manipulations conducted from 1984 to 1991, planktivorous fishes were alternately removed and restocked in a small mesotrophic lake, resulting in dramatic changes in the zooplankton community. 2. Response patterns in the zooplankton community, which include species and size structure, and within-year community variability, were examined. Variation in the zooplankton community in unmanipulated years was much lower than that in manipulated years, regardless of direction of the manipulation (i.e. decreasing or increasing planktivory). 3. The succession of zooplankton species abundance was repeated in the second removal of planktivorous fishes. The community shifted from small-bodied cladocerans, copepods and rotifers, through an intermediate state with high abundance of Holopedium, to an assemblage dominated by large-bodied daphnids.  相似文献   

11.
Over a period of four years, the seasonal periodicity of dominant phytoplankton species in a shallow, eutrophic Danish lake changed markedly. Cyanophytes prevailed during the summer period of all four years. In the first three years, species of Microcystis, Anabaena and Aphanothece dominated, whereas in the fourth year of investigation, these algae were replaced by Gloeotrichia echinulata (J. E. Smith) Richter and Aphanizomenon flos-aquae (L.) Ralfs. The most striking environmental differences in the fourth year as compared with the previous three years, were an increase in tranparency, from about 0.5 meter in 1989–1991 to more than 2 metres preceding the summer maximum in 1992, and a simultaneous occurrence of low oxygen concentrations. A collapse of the fish population was followed by an increased proportion of large Cladocerans in the zooplankton. Improved light conditions at the bottom and grazing pressure from large Cladocerans favoured growth of the large colony forming blue-green algae, Gloeotrichia echinulata and Aphanizomenon flos-aquae. These species germinate from resting spores in the sediment and are able to sustain some growth there before migration to the lake water. The transfer of algal biomass from the bottom sediment to the water phase was accompanied by a marked increase in concentrations of particulate phosphorus and nitrogen in the entire lake.  相似文献   

12.
Non-siliceous algae in a five meter core from Lake Kinneret (Israel)   总被引:1,自引:1,他引:0  
U. Pollingher 《Hydrobiologia》1986,143(1):213-216
The composition and succession of non-siliceous algae, studied in a five meter core from Lake Kinneret (Israel), are described. Only Chlorophyta species were recorded, probably due to the standard palynological sample processing which was used. In the lower part of the core, from the bottom to 300 cm (interval 5500–2500 years B.P.), Botryococcus braunii was the only common alga. Relevant changes in algal diversity and abundance occur at 300 cm. Many species of green algae were recorded for the first time (Pediastrum, Scenedesmus, Coelastrum, etc.). These changes may be related to an increase in nutrient concentration as a consequence of cultural disturbance. In the interval 300-0 cm, a succession of Pediastrum species is followed. The recovered green algae are extant in the present plankton of Lake Kinneret. They also constitute an important part of the algae found in the profundal sediments today.  相似文献   

13.
研究于2019年春、夏、秋、冬四季对保安湖进行了水样采集, 基于宏基因组测序, 在优化物种鉴定和丰度计算方法的基础上, 考察了保安湖浮游动物的多样性、群落结构及其影响因素。共鉴定到浮游动物OTU 374种, 其中原生动物282个; 枝角类45个; 桡足类26个; 轮虫21个。从季节来看, 夏、秋季保安湖的浮游动物多样性高; 从湖区来看, 肖四海和主湖区浮游动物多样性高。季节因素对保安湖浮游动物群落结构的影响高于湖区影响。保安湖营养状态为中营养型, 水体温度、叶绿素a是影响保安湖浮游动物群落结构的主要环境因子, 不同类群与环境因子相关性不同, 总体可分为5类。其中原生动物优势类群为混合营养的纤毛虫和丝足虫, 同硝氮、化学需氧量、温度有明显的相关性, 而枝角类和桡足类同环境因子的关系较为相似, 与溶氧、叶绿素a、正磷酸盐存在明显相关。研究利用宏基因组方法对保安湖浮游动物多样性开展了研究, 为从浮游动物这一角度来理解保安湖这一江湖阻隔型湖泊的生物多样性的变化提供了支撑。  相似文献   

14.
Summary The seasonal succession of the plankton in the marine brackish Lake Grevelingen, a closed sea arm in the S.W.-Netherlands, comprises the initial stagessensu Margalef and is characterized by predominantly small phytoplankton (flagellates, diatoms) and zooplankton (rotifers, tintinnids, copepods), maintaining relatively high levels of production from early spring (February) to late summer (September). The structure of the plankton in the course of seasonal succession is in agreement with the concepts of Margalef.Simplification of the pelagic food web in Lake Grevelingen has occurred as a consequence of the elimination of the tides. Some examples are given in relation to the composition of the phyto- and zooplankton and of its significance. The occurrence of rotifer-dominated zooplankton blooms in early spring is emphasized.Closed sea arms such as Lake Grevelingen, showing the same morphometry as the previous tidal estuary, contain extended shallow areas which influence strongly the pelagic zone. The abundance in the zooplankton of larval stages of several littoral-benthic species demonstrate these influences clearly. The shallows of the lake, occupied by eelgrass beds (Zostera marina) in summer, influence the pelagic zone in several ways: large quantities of detritus are given off after the growing season, sheltered habitats are supplied for small pelagic animals, and eelgrass leaves represent a substrate for epifauna species.Contribution no. 168 of the Delta Institute for Hydrobiological Research.  相似文献   

15.
The biology of an Antarctic aquatic moss community   总被引:2,自引:0,他引:2  
SUMMARY. Two species of aquatic moss ( Calliergon sarmentosum and Drepanocladus sp.) occur in deep water in Moss Lake, Signy Island (60° 43'S, 45° 38'W). Their elongate stems support a structurally complex community of epiphytic algae and associated invertebrates which has a greater diversity than the surrounding benthic algal communities.
Qualitative differences in the distribution and abundance of the epiphytic algae are described. Two groups of algae present on both mosses are distinguished–'habitual' and 'casual' epiphytes. On Calliergun , algae are most abundant in the leaf axil. The succession of epiphytes down the stem and the progressive deterioration of the moss plant are used to characterize six stem zones.
The invertebrates are benthic and most move actively among the moss. Six species of rotifers are more or less permanently attached and show a preference for the middle stem zones where epiphyte cover is highest. Four species favour the leaf axil, the other two colonize the bare underside of the leaf.
A settlement experiment has shown the importance of wind-induced mixing in summer for the transport of some epiphytic species from shallow parts of the lake. The settlement of sessile rotifers is effected by their larvae.
Photosynthesis declines from the stem apex to the dead old stem. Much of the primary production of the community is algal. The respiration maximum occurs where the highest concentration of epiphytic algae and invertebrates is found.
Interrelationships between the invertebrates and the epiphytic algae are suggested and a comparison is made between these data and other studies.  相似文献   

16.
Can a community of small-bodied grazers control phytoplankton in rivers?   总被引:4,自引:0,他引:4  
1. Phytoplankton, zooplankton and grazing were monitored throughout the growing season for three years (1994–96) in the Belgian section of the River Meuse.
2. A size structure analysis of the algal community shows that there was a summer shift toward larger algal units, following a decline in phytoplankton biomass. These changes occurred after an increase in zooplankton biomass and diversity.
3. Daily filtration rates of grazers ranged from 1 to 113% day–1 and maxima were observed during the summer period. Higher rates tended to correspond with peaks of rotifer biomass. A decline in total phytoplankton biomass within two weeks followed the increase in zooplankton biomass and filtration rate. A rapid biomass recovery was then observed, along with a shift of the algal community toward larger units. When grazing activity was not sustained, due to zooplankton fluctuations, the change in phytoplankton size structure was less marked.
4. We suggest that the composition of the phytoplankton community of large rivers may at times be controlled by grazers. However, such biotic interactions can take place only when physical constraints are reduced, i.e. when discharge is low, and when increased transfer time, high temperature and availability of grazeable algae allow high zooplankton biomass.  相似文献   

17.
Studies were carried out in Lake Mutek (Mazurian Lakeland) on the effect of artificial aeration and destratification upon quantitative changes in the phytoplankton. These studies were carried out from 1977 until 1983. Two different methods of aeration were used. Low intensity mixing resulted initially in a two-fold, and later on in a four-fold increase of the phytoplankton biomass. Increase of phytoplankton biomass during lake aeration was due to the development of Ceratium hirudinella. Use of a highly effective air-compressor caused an inhibition of algal development, so that biomass dropped to levels noted in the control year. It was found that the effect of aeration depended on the ratio between lake area and effectiveness of the aerator. Only intensive mixing of the water masses resulted in an inhibition of the development of algae. The effect of artificial destratification was also reflected in changes of the species structure, seasonal succession of the algae, and physiological state of the phytoplankton. Artificial circulation stimulated development of algae characterized by relatively high specific weight, i.e. most of all of Pyrrophyta, Bacillariophyceae and some species of Chlorophyta. Various aspects were discussed of the use of direct aeration as a technical method of lake restoration.  相似文献   

18.
The invertebrate community living in algal mats on intertidal boulders was studied for 2 yr. The diversity and abundance of the animals increased between the early and middle stages of algal succession, then remained similar into the later stage. Three possible mechanisms producing this pattern were investigated experimentally by manipulating natural algal mats and plastic algal mimics in the field and laboratory and evaluating the community of colonizing invertebrates. The first, the “ecological time” hypothesis, suggests that there are more species and individuals in later stages because they accumulate slowly with time; this hypothesis was tested experimentally and rejected. A second, “algal toxicity” hypothesis suggests that species richness and abundance are lower in earlier successional stages because the early colonizing green algae are more toxic to animals than are the later red algae. This hypothesis was also tested experimentally and rejected. The third, “habitat complexity” hypothesis suggests that increases in complexity of physical aspects of algal structure (biomass, surface area) cause increases in invertebrate richness and abundance. The fact that this result was found in both living algae and plastic mimics indicates that biological aspects of algal structure apparently have only minor importance. Algal biomass and surface area increase from early to middle successional stages; middle and late successional stages are similar. In general, increases in these physical aspects of algal structure produce concomitant increases in the abundance and diversity of the associated animal community. With higher biomass and surface area, increased numbers of individuals accumulate in algal mats. Because a larger sample of the available pool of individuals is therefore collected, more species are found in a given area of algal mat when the structure is more complex. The successional patterns of increase in species richness of this invertebrate community seem to result from this sampling phenomenon, rather than from increases in numbers of resources (i.e., “niches”).  相似文献   

19.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

20.
Changes of bacterioplankton diversity in lake water were followed in triplicate, continuous-flow experimental tanks. Most probable numbers (MPN) were obtained for 95 different carbon sources using BIOLOG plates and were used to characterize bacterioplankton diversity. During 70 days of incubation, MPN declined for 15 of the 95 substrates while three of 95 appeared to be newly used, indicating functional succession in the bacterioplankton. Total bacterial cell abundance was constant from day 7 to day 70 of the incubation period. The succession of species composition of phyto- and zooplankton was also observed and suggested some involvement by phyto- and zooplankton species in the changes of bacterioplankton diversity. Thus, BIOLOG-based MPN assays is a simple but sensitive method for characterizing the changes in the bacterioplankton carbon utilization profile and is also useful for tracing the functional succession of bacterioplankton diversity within a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号