首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine transport in bovine chromaffin cells in culture   总被引:8,自引:0,他引:8  
Bovine adrenal chromaffin cells in culture have a high capacity and affinity for adenosine uptake with Vmax = 14 +/- 2.4 pmol/10(6) cells/min (133 pmol/mg of protein/min) and Km = 1 +/- 0.2 microM. Transport studies, at short time periods, in recently isolated chromaffin cells have Vmax = 15 pmol/10(6) cells/min and Km = 1.1 microM in ATP-depleted cells. Endogenous levels of the various purine nucleosides and bases were determined by high pressure liquid chromatography, with adenosine (3 +/- 1 nmol/10(6) cells), inosine (5.3 +/- 1.2 nmol/10(6) cells), and hypoxanthine (2.1 +/- 0.8 nmol/10(6) cells) being the purine metabolites found in the highest concentration. Taking into account the intracellular water, endogenous levels of 2.1, 3.8, and 1.5 mM, respectively, were obtained. Radioactively labeled adenosine inside the cell underwent enzymatic transformations, producing inosine, hypoxanthine, xanthine, and nucleotides, with their appearance and distribution being a function of the incubation time. When nicotine was used as a secretagogue, the adenosine transformed into the nucleotide pool was released, reaching 18 +/- 8% of the total adenosine found in the nucleotides. Dipyridamole, extensively used clinically, was a strong inhibitor for the adenosine uptake into these cells, with Ki = 5 +/- 0.5 nM and noncompetitive kinetically.  相似文献   

2.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

3.
Adenosine (ADO), an endogenous regulator of coronary vascular tone, enhances vasorelaxation in the presence of nucleoside transport inhibitors such as dipyridamole. We tested the hypothesis that coronary smooth muscle (CSM) contains a high-affinity transporter for ADO. ADO-mediated relaxation of isolated large and small porcine coronary artery rings was enhanced 12-fold and 3.4-fold, respectively, by the transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI). Enhanced relaxation was independent of endothelium and was selective for ADO over synthetic analogs. Uptake of [(3)H]ADO into freshly dissociated CSM cells or endothelium-denuded rings was linear and concentration dependent. Kinetic analysis yielded a maximum uptake (V(max)) of 67 +/- 7.0 pmol. mg protein(-1). min(-1) and a Michaelis constant (K(m)) of 10. 5 +/- 5.8 microM in isolated cells and a V(max) of 5.1 +/- 0.5 pmol. min(-1). mg wet wt(-1) and a K(m) of 17.6 +/- 2.6 microM in intact rings. NBTI inhibited transport into small arteries (IC(50) = 42 nM) and cells. Analyses of extracellular space and diffusion kinetics using [(3)H]sucrose indicate the V(max) and K(m) for ADO transport are sufficient to clear a significant amount of extracellular adenosine. These data indicate CSM possess a high-affinity nucleoside transporter and that the activity of this transporter is sufficient to modulate ADO sensitivity of large and small coronary arteries.  相似文献   

4.
Characterization of Nucleotide Transport into Rat Brain Synaptic Vesicles   总被引:2,自引:0,他引:2  
ATP transport to synaptic vesicles from rat brain has been studied using the fluorescent substrate analogue 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP). The increase in intravesicular concentration was time dependent for the first 30 min, epsilon-ATP being the most abundant nucleotide. The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.39 +/- 0.06 and 3.8 +/- 0.1 mM with epsilon-ATP as substrate. The Vmax values obtained were 13.5 +/- 1.4 pmol x min(-1) x mg of protein(-1) for the first curve and 28.3 +/- 1.6 pmol x min(-1) x mg of protein(-1) considering both components. This kinetic behavior can be explained on the basis of a mnemonic model. The nonhydrolyzable adenine nucleotide analogues adenosine 5'-O-3-(thiotriphosphate), adenosine 5'-O-2-(thiodiphosphate), and adenosine 5'-(beta,gamma-imino)triphosphate and the diadenosine polyphosphates P1,P3-di(adenosine)triphosphate, P1,P4-di(adenosine)tetraphosphate, and P1,P5-di(adenosine)pentaphosphate inhibited the nucleotide transport. The mitochondrial ATP/ADP exchange inhibitor atractyloside, N-ethylmaleimide, and polysulfonic aromatic compounds such as Evans blue and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid also inhibit epsilon-ATP vesicular transport.  相似文献   

5.
Mo FM  Ballard HJ 《Life sciences》2000,67(3):227-234
We investigated the effects of graded doses of lactic acid on the intracellular pH and adenosine output from superfused bundles of about 15 skeletal muscle fibres. Intracellular pH was determined using the fluorescent intracellular dye, 2',7'-bis-(2-carboxyethyl)-5-(and,6-) carboxyfluorescein (BCECF), and adenosine efflux was measured by HPLC. Intracellular pH was 7.07 +/- 0.05 under control conditions, which was around 0.35 units lower than extracellular pH, and adenosine output was 63 +/- 10 pmol/min/g. Lactic acid produced dose-dependent decreases in intracellular pH and dose-dependent increases in adenosine output: 10 mM lactic acid decreased intracellular pH to 6.57 +/- 0.04 and increased adenosine output to 159 +/- 34 pmol/min/g. The adenosine output and the intracellular pH were well correlated (r2 = 0.988; P < 0.01).  相似文献   

6.
A sensitive and specific assay for measurement of adenine nucleotides and adenosine by paired-ion high-performance liquid chromatography is described. The 1,N6-ethenoderivatives of ATP (epsilon-ATP), ADP (epsilon-ADP), AMP (epsilon-AMP), and adenosine (epsilon-Ado), formed by reaction with chloroacetaldehyde at 37 degrees C, were separated under isocratic conditions in 20 min. These compounds are strongly fluorescent at an emission wavelength of 280 nm, rendering a lowest detection limit of 2-5 pmol per injection. The detector responded linearly over the measured ranges (5-100 pmol for epsilon-Ado and 5-4000 pmol for nucleotides). Specificity was confirmed enzymatically. alpha, beta-Methyleneadenosine 5'-diphosphate could be used as an internal standard for measurement of the nucleotides. Significant amounts of NADH appeared as a separate peak in hypoxic tissue. Recoveries from snap-frozen kidney were 88, 92, 76, and 63% for AMP, ADP, ATP, and adenosine, with SD for recovery of 1.0, 10.5, 8.3, and 5.6%, respectively. This method was successfully used to measure adenine nucleotides and adenosine in oxygenated and hypoxic perfused rat kidneys.  相似文献   

7.
The transport of [U-14C]uridine was investigated in rat cerebral-cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions the rapid efflux of uridine from the synaptosomes is prevented and uridine is not significantly metabolized in the synaptosome during the first 1 min of uptake. The dose-response curve for the inhibition of uridine transport by nitrobenzylthioinosine (NBMPR) was biphasic: approx. 40% of the transport activity was inhibited with an IC50 (concentration causing half-maximal inhibition) value of 0.5 nM, but the remaining activity was insensitive to concentrations as high as 1 microM. Similar biphasic dose-response curves were observed for dilazep inhibition, but both transport components were equally sensitive to dipyridamole inhibition. Uridine influx by both components was saturable (Km 300 +/- 51 and 214 +/- 23 microM, and Vmax. 12 +/- 3 and 16 +/- 3 pmol/s per mg of protein, for NBMPR-sensitive and NBMPR-insensitive components respectively), and inhibited by other nucleosides such as 2-chloroadenosine, adenosine, inosine, thymidine and guanosine with similar IC50 values for the two components. Inhibition of uridine transport by NBMPR was associated with high-affinity binding of NBMPR to the synaptosome membrane (Kd 58 +/- 15 pM). Binding of NBMPR to these sites was competitively blocked by uridine and adenosine and inhibited by dilazep and dipyridamole, with Ki values similar to those measured for inhibiting NBMPR-sensitive uridine influx. These results demonstrate that there are two components of nucleoside transport in our rat synaptosomal preparation that differ in their sensitivity to inhibition by NBMPR. Thus conclusions regarding nucleoside transport in rat brain based only on NBMPR-binding activity must be viewed with caution.  相似文献   

8.
A detailed understanding of adenosine metabolism of vascular smooth muscle cells (VSMC) is highly desirable to critically evaluate possible autocrine effects of adenosine in this cell species. Therefore, this study quantified intra- and extracellular adenosine flux rates, the transmembrane concentration gradient, and the adenosine surface concentration in porcine VSMC and, for comparison, aortic endothelial cells (PAEC). Cell-covered microcarrier beads packed in a chromatography column were superfused with a HEPES buffer. With the use of specific inhibitors of adenosine kinase (iodotubericidine, 10 microM), adenosine deaminase [erythro-9-(2-hydroxy-3-nonyl)-adenine, 5 microM], ecto-5'-nucleotidase (alpha,beta-methylene-adenosine 5'-diphosphate, 50 microM), and adenosine membrane transport (n-nitrobenzylthioinosine, 1 microM), total production rates of 12.3 +/- 2.7 and 7.5 +/- 1.3 pmol x min(-1) x microl cell volume(-1) were obtained for VSMC and PAEC, respectively. Despite prevailing intracellular adenosine production (76 and 70% of total production, respectively), transmembrane concentration gradients under control conditions were directed toward the cytosol as a result of rapid intracellular adenosine rephosphorylation and continuous extracellular hydrolysis from 5'-AMP. Surface concentrations were approximately 18 nM in VSMC and PAEC under control conditions and increased to approximately 60 nM during partial inhibition of adenosine metabolism. Simultaneously, the transmembrane adenosine concentration gradient was reversed. We conclude that adenosine flux rates in VSMC and PAEC are quantitatively similar and that VSMC may influence the interstitial adenosine concentration under basal steady-state conditions.  相似文献   

9.
Adenosine is an important signaling molecule for many cellular events. Adenosine deaminase (ADA) is a key enzyme for the control of extra- and intra-cellular levels of adenosine. Activity of ADA was detected in hemolymph of B. glabrata and its optimum assay conditions were determined experimentally. The pH variation from 6.2 to 7.8 caused no significant change in ADA activity. Using adenosine as a substrate, the apparent Km at pH 6.8 was 734 micromols.L(-1). Highest activity was found at 37 degrees C. Standard assay conditions were established as being 15 minutes of incubation time, 0.4 microL of pure hemolymph per assay, pH 6.8, and 37 degrees C. This enzyme showed activities of 834 +/- 67 micromol.min(-1).L(-1) (25 degrees C) and 2029 +/- 74 micromol.min(-1).L(-1) (37 degrees C), exceeding those in healthy human serum by 40 and 100 times, respectively. Higher incubation temperature caused a decrease in activity of 20% at 43 degres C or 70% at 50 degrees C for 15 minutes. The ADA lost from 26% to 78% of its activity when hemolymph was pre-incubated at 50 degrees C for 2 or 15 minutes, respectively. Since the ADA from hemolymph presented high levels, it can be concluded that in healthy and fed animals, adenosine is maintained at low concentrations. In addition, the small variation in activity over the 6.2 to 7.8 range of pH suggests that adenosine is maintained at low levels in hemolymph even under adverse conditions, in which the pH is altered.  相似文献   

10.
The bovine cardiac sarcolemmal binding sites for the dihydropyridine nimodipine and the phenylalkylamine (-)-desmethoxyverapamil were studied. The density of the nimodipine and (-)-desmethoxyverapamil binding sites increased 8.3-fold and 3.4-fold with the sarcolemma. The binding sites for both compounds were destroyed by trypsin. Nimodipine bound in the presence of 1 mM free calcium to a high-affinity and a low-affinity site with apparent Kd values of 0.35 +/- 0.09 nM (n = 9) and 33 +/- 6.0 nM (n = 9) and with apparent densities of 0.3 +/- 0.05 pmol/mg (n = 9) and 8.2 +/- 1.0 pmol/mg (n = 9). The binding to the high-affinity site was abolished by 1 mM EGTA. The binding sites were specific for dihydropyridines. The (-)-isomers of several phenylalkylamines inhibited nimodipine binding by an apparent allosteric mechanism. (-)-Desmethoxyverapamil bound in the presence of 5 mM EGTA to a high-affinity and a low-affinity site with apparent Kd values of 1.4 +/- 0.3 nM (n = 6) and 171 +/- 26 nM (n = 6) and with apparent densities of 0.16 +/- 0.02 pmol/mg (n = 6) and 13.6 +/- 2.7 pmol/mg (n = 6). The binding to both sites was inhibited by calcium with a half-maximal concentration of 4.3 mM. The binding sites were specific for the other phenylalkylamines and had a higher affinity for the (-)-isomers than for the (+)-isomers. Nimodipine inhibited the binding of (-)-desmethoxyverapamil by an apparent allosteric mechanism. d-cis-Diltiazem inhibited non-competitively the binding of (-)-[3H]desmethoxyverapamil with a Ki of 3.7 microM. Diltiazem up to concentrations of 10 microM did not affect the amount of nimodipine bound at equilibrium at 20 degrees C. However, but in agreement with this result, diltiazem decreased threefold at 20 degrees C the dissociation and association rates for the high-affinity nimodipine receptor. These rates were only marginally affected at 4 degrees C and 37 degrees C. d-cis-Diltiazem reversed in a competitive manner the inhibition of nimodipine binding elicited by the addition of (-)-desmethoxyverapamil with a Ka value of 1.6 microM. The amount of nimodipine bound was inhibited by 50% by the adenosine uptake inhibitors nitrobenzylthioinosine and hexobendine with apparent median inhibitory concentrations of 1 nM and 3 nM, respectively. Nitrobenzylthioinosine completely abolished binding of nimodipine to the low-affinity site, but did not affect binding to the high-affinity site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Long JA  Guthrie HD 《Theriogenology》2006,65(8):1620-1630
Quantification of ATP content in spermatozoa is a useful assay for evaluating sperm function; however, most detection methodology relies on assessing single samples. We have developed and validated a highly repeatable assay that permits simultaneous measurement of up to 78 samples. A key feature of this assay includes combination of a phosphatase inhibition and ATP extraction step that permits maximal detection of ATP and sample storage at -20 degrees C prior to assay. The assay was validated for spermatozoa from three different species, including turkey, rooster and boar. The sensitivity of the assay differed between avian and mammalian spermatozoa, with 2.5 x 10(6) spermatozoa being the lowest number of turkey and rooster spermatozoa that could be assayed compared to 2.5 x 10(5) boar spermatozoa. Concentrations of ATP in fresh turkey semen ranged from 2.14 to 15.6 nmol/10(9) spermatozoa; similarly, freshly collected rooster semen contained from 2.16 to 21.4 nmol ATP/10(9) spermatozoa. Evaluation of turkey semen that had been stored at 4 degrees C for 24 h revealed a decline in ATP concentrations (2.35 +/- 0.34 nmol ATP/10(9) spermatozoa). Likewise, cryopreserved rooster spermatozoa contained lower concentrations of ATP (0.05 +/- 0.01 nmol ATP/10(9) spermatozoa) than non-stored spermatozoa. Boar spermatozoa contained similar concentrations of ATP, whether fresh (74.2 +/- 8.1 pmol ATP/10(6) spermatozoa), stored for 1 day (77.0 +/- 8.1 pmol ATP/10(6) spermatozoa) or 5 days (81.96 +/- 8.1 pmol ATP/10(6) spermatozoa). For all three species, assay variation was low (inter-assay, 0.66-1.9% CV; intra-assay, 1.3% CV).  相似文献   

12.
Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6+/-3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitoneally the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90+/-11%; cellobiose, 10+/-3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96+/-11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen.  相似文献   

13.
The uptake of pyrimidines and their derivatives into Candida glabrata and Candida albicans was measured using a novel technique in which the cells were rapidly separated from their suspending medium by centrifugation through a layer of an inert oil. The uptake of [14C]cytosine was linear for 30 s for all concentrations of pyrimidine tested. In C. glabrata but not C. albicans cytosine transport was mediated by both a high affinity (Km 0.8 +/- 0.1 microM), low capacity [V 40 +/- 4 pmol (microliters cell water)-1 s-1] and a low affinity [Km 240 +/- 35 microM], high capacity system [V 770 +/- 170 pmol (microliters cell water)-1 s-1]. The cytosine permease in C. glabrata was specific for cytosine and 5-fluorocytosine. In C. albicans there was only one cytosine transport system [Km 2.4 +/- 0.3 microM; V 50 +/- 4 pmol (microliters cell water)-1 s-1]; this system also transported adenine, guanine and hypoxanthine. Differences in nucleoside transport were also observed for C. glabrata and C. albicans, with the uridine permease in C. glabrata transporting only uridine and 5-fluorouridine whereas cytidine and adenosine were also transported by the uridine permease in C. albicans. Studies on the effect of nucleoside analogues on uridine transport in C. glabrata demonstrated the importance of the sugar moiety in determining the specificity of transport, with a hydroxyl residue on C-2 being apparently essential for transport.  相似文献   

14.
Previously we showed that pressor and differential regional sympathoexcitatory responses (adrenal > renal >/= lumbar) evoked by stimulation of A(1) adenosine receptors located in the nucleus of the solitary tract (NTS) were attenuated/abolished by baroreceptor denervation or blockade of glutamatergic transmission in the NTS, suggesting A(1) receptor-elicited inhibition of glutamatergic transmission in baroreflex pathways. Therefore we tested the hypothesis that stimulation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex responses of preganglionic adrenal (pre-ASNA), renal (RSNA), and lumbar (LSNA) sympathetic nerve activity. In urethane-chloralose-anesthetized male Sprague-Dawley rats (n = 65) we compared baroreflex-response curves (iv nitroprusside and phenylephrine) evoked before and after bilateral microinjections into the NTS of A(1) adenosine receptor agonist (N(6)-cyclopentyladenosine, CPA; 0.033-330 pmol/50 nl). CPA evoked typical dose-dependent pressor and differential sympathoexcitatory responses and similarly shifted baroreflex curves for pre-ASNA, RSNA, and LSNA toward higher mean arterial pressure (MAP) in a dose-dependent manner; the maximal shifts were 52.6 +/- 2.8, 48.0 +/- 3.6, and 56.8 +/- 6.7 mmHg for pre-ASNA, RSNA, and LSNA, respectively. These shifts were not a result of simple baroreceptor resetting because they were two to three times greater than respective increases in baseline MAP evoked by CPA. Baroreflex curves for pre-ASNA were additionally shifted upward: the maximal increases of upper and lower plateaus were 41.8 +/- 16.4% and 45.3 +/- 8.7%, respectively. Maximal gain (%/mmHg) measured before vs. after CPA increased for pre-ASNA (3.0 +/- 0.6 vs. 4.9 +/- 1.3), decreased for RSNA (4.1 +/- 0.6 vs. 2.3 +/- 0.3), and remained unaltered for LSNA (2.1 +/- 0.2 vs. 2.0 +/- 0.1). Vehicle control did not alter the baroreflex curves. We conclude that the activation of NTS A(1) adenosine receptors differentially inhibits/resets baroreflex control of regional sympathetic outputs.  相似文献   

15.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Dilazep, a vasodilator previously recognized as an inhibitor of adenosine permeation, very rapidly blocked the uptake of adenosine by cultured L5178Y cells, and accordingly was used as a quencher in a simple quenched-flow system for measuring cellular uptake of nucleosides during very short intervals. Time courses of cellular uptake of adenosine, assayed during intervals between 0.05 and 0.5s with the quenched-flow system, were linear and defined initial rates of adenosine uptake. The latter are rates of inward transport of adenosine. Kinetic constants for that process in cultured S49 cells determined with the quenched-flow procedure were similar to those determined with an assay dependent on manual timing. In studies of adenosine uptake kinetics in human erythrocytes at 22 degrees C and 37 degrees C in which the quenched-flow procedure was used, time courses of adenosine uptake were linear at both temperatures and defined initial uptake rates; kinetic constants (means +/- S.E.M.) at 22 degrees C (n = 8) were Km 25 +/- 14 microM and Vmax. 15 +/- 5 pmol/s per microliter of cell water and at 37 degrees C (n = 3) were Km 98 +/- 17 microM and Vmax. 80 +/- 9 pmol/s per microliter of cell water.  相似文献   

17.
N O'Hara  H Ono 《Life sciences》1987,40(13):1301-1308
The effects of papaverine on specific [3H]-yohimbine binding to canine platelet alpha 2-adrenergic receptors and on the platelet aggregation were assessed and compared with those of verapamil. Both compounds concentration-dependently inhibited [3H]-yohimbine binding with KI values for respective compounds of 0.39 +/- 0.05 microM (n = 3) and 15 +/- 0.19 microM (n = 3). In the presence of either compound KD values in Scatchard analysis of the equilibrium ligand binding increased in concentration-dependent manner, whereas Bmax did not change, indicating competitive inhibition of the ligand binding by these compounds. (-)-Epinephrine (3 microM) potentiation of adenosine diphosphate (ADP, 0.1 microM) aggregation was inhibited by papaverine with IC50 of 11 +/- 3.6 microM (n = 4). In the same experiments verapamil inhibited the platelet aggregation with lower IC50 (3.1 +/- 0.87 microM, n = 4) in comparison with that for papaverine. These results suggest that papaverine, like verapamil, inhibits physiological response of canine platelets through alpha-adrenergic receptor stimulation by direct interaction with the receptors.  相似文献   

18.
Two classes of atrial natriuretic peptide (ANP) receptors are present in purified sarcolemmal membrane fractions isolated from rat ventricle. Scatchard analysis using [125I]-ANP reveals high affinity (Kd approximately 10(-11) M) and low affinity (Kd approximately 10(-9) M) binding sites. Basal guanylate cyclase activities associated with these membrane fractions range from 3.2 +/- 1.3 pmol/min/mg protein in the presence of Mg2+ to 129 +/- 17 pmol/min/mg protein in the presence of Mn2+. Millimolar concentrations of adenosine triphosphate (ATP) potentiates Mg2+- but not Mn2+-supported activity. Binding of ANP to the low affinity site but not the high affinity site results in a maximum 2-fold activation of Mn2+- and up to 6-fold activation of Mg2+/ATP supported guanylate cyclase activities.  相似文献   

19.
A quantitative evaluation of the thresholds of changes in the firing rate/pattern and depolarizing block of the neuron and the bradycardiac response by pressure microinjection of 10 mM glutamate (Glu) into the region of the nucleus ambiguus (NA) of the ventral medulla was performed in anesthetized rats. A change in neuronal activity was shown with injection of about 2 pmol of Glu. A depolarizing block of single-unit activity could be observed at 2.9 +/- 0.3 nl (approximately 30 pmol, n = 22). Maximal bradycardiac response (-50 +/- 5%) was elicited with 4.4 +/- 0.7 nl (approximately 50 pmol, n = 10), which is significantly smaller than the ranges used in previous studies. Based on these results, a safe and effective use of 10 mM Glu to induce neuronal or physiological response should be in the range of a few nanoliters and less than 100 pmol, especially for the NA.  相似文献   

20.
Two equilibrative (facilitated diffusion) nucleoside transport processes and a concentrative Na(+)-dependent co-transport process contribute to zero-trans inward fluxes of nucleosides in L1210 mouse leukemia cells. Na(+)-linked inward adenosine fluxes in L1210/AM cells (a clone deficient in adenosine, deoxyadenosine, and deoxycytidine kinase activities) were measured as initial rates of [3H]adenosine influx in medium containing Na+ salts and 10 microM dipyridamole. The Na(+)-linked transporter distinguished between the D- and L-enantiomers of adenosine, the latter being a virtual nonpermeant in the initial-rate assay. Adenine arabinoside, inosine, 2'-deoxyadenosine and 2'-deoxyadenosine derivatives with halogen atoms at the purine C-2 position were recognized as substrates of the Na(+)-linked system because of their inhibition of adenosine (10 microM) fluxes under the condition of Na(+)-dependence with IC50 values ranging between 25 and 183 microM; uridine, deoxycytidine, and cytosine arabinoside (each at 400 microM) inhibited adenosine fluxes by 10-40%. Inward Na(+)-linked adenosine fluxes were saturable with respect to extracellular adenosine and Na+ concentrations [( Na+]o); Km and Vmax values for adenosine influx were 9.4 +/- 2.6 microM and 1.67 +/- 0.2 pmol/microliter cell water/s when [Na+]o was 100 mM. The stoichiometry of Na+:adenosine co-transport, determined by Hill analysis of the dependence of adenosine fluxes on [Na+]o, was 1:1. The thiol-reactive agents, N-ethylmaleimide (NEM), showdomycin and p-chloromercuriphenylsulphonate (pCMPS), inhibited Na(+)-linked adenosine fluxes with IC50 values of 40, 10, and 2 microM, respectively. This inhibition was partially reversed by the presence of adenosine in incubation media containing pCMPS, but not NEM. Thiol groups accessible to pCMPS may be involved in substrate recognition by the transporter and in the permeation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号