首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The laboratory mouse C57BL genome contains about 50 copies of a long-range repeat DNA family clustered in the C-D region of chromosome 1. The repeat length is more than 50 kb and includes sequences homologous to at least two mRNAs. There are small differences in the copies of this repeat family such as restriction site mutations and gross differences like rearrangements and insertions of LINE1 elements. A germline homogeneously staining region occurring as a chromosome 1 polymorphism in many feral populations of the house mouse is an amplified version of this long-range repeat cluster.  相似文献   

2.
A double-strand break (DSB) in the mammalian genome has been shown to be a very potent signal for the cell to activate repair processes. Two different types of repair have been identified in mammalian cells. Broken ends can be rejoined with or without loss or addition of DNA or, alternatively, a homologous template can be used to repair the break. For most genomic sequences the latter event would involve allelic sequences present on the sister chromatid or homologous chromosome. However, since more than 30% of our genome consists of repetitive sequences, these would have the option of using nonallelic sequences for homologous repair. This could have an impact on the evolution of these sequences and of the genome itself. We have designed an assay to look at the repair of DSBs in LINE-1 (L1) elements which number 10(5) copies distributed throughout the genome of all mammals. We introduced into the genome of mouse epithelial cells an L1 element with an I-SceI endonuclease site. We induced DSBs at the I-SceI site and determined their mechanism of repair. We found that in over 95% of cases, the DSBs were repaired by an end-joining process. However, in almost 1% of cases, we found strong evidence for repair involving gene conversion with various endogenous L1 elements, with some being used preferentially. In particular, the T(F) family and the L1Md-A2 subfamily, which are the most active in retrotransposition, appeared to be contributing the most in this process. The degree of homology did not seem to be a determining factor in the selection of the endogenous elements used for repair but may be based instead on accessibility. Considering their abundance and dispersion, gene conversion between repetitive elements may be occurring frequently enough to be playing a role in their evolution.  相似文献   

3.
M H Heim  U A Meyer 《Genomics》1992,14(1):49-58
The CYP2D gene cluster on human chromosome 22 containing the functional cytochrome P450 gene CYP2D6 and two or three highly homologous pseudogenes is involved in a clinically important variation in the inactivation of drugs and environmental chemicals. Several mutant haplotypes of CYP2D6 have been identified by restriction analysis and by PCR-based allele-specific amplification. To understand the evolutionary sequence of mutational events as well as recently discovered interracial differences, we analyzed the arrangement of the CYP2D haplotype containing a common mutant allele of CYP2D6 associated with a XbaI 44-kb fragment. This haplotype contains four CYP2D genes instead of three. Comparison of the sequences of these genes with those of previously characterized haplotypes suggests that an early point mutation was followed by a crossover and a gene conversion event, the latter found preferentially in Caucasians. These data are consistent with the rapid evolution of this locus during "plant-animal warfare" with practical consequences for present-day defense of the organism against environmental adversity.  相似文献   

4.
5.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

6.
We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes.  相似文献   

7.
The long interspersed repetitive family L1 was analysed in different species belonging to the genus Mus. It is shown to be highly conserved even in M.n. setulosus, which diverged from the other species around ten million years ago. The study of the linkage between diagnostic restriction sites in the various species and the sequence variations of different regions of the L1Md repeat shows that the L1 family undergoes concerted changes involving subsets of repeats. The rate at which this homogenization process occurs does not appear to be the same for all the subfamilies detected. The L1Md repeat in the twelfth intron of the serum albumin gene of Balb/c mice is shown to be a recent insertion. The role retroposon- and gene conversion-like events may play in the concerted evolution of the L1 family is discussed.  相似文献   

8.
9.
Summary We have screened a human genomic DNA library with an immunoglobulin (Ig) derived switch (S) region specific probe for homologous sequences. Five Ig independent phage clones were isolated and characterized. The S sequence homologous DNA fragments are short compared to the S region sequences. Ig independent S sequences are flanked by highly repetitive DNA elements and perfect inverted repeats can be demonstrated in their close vicinity. Using subclones of S homologous sequences restriction fragment length polymorphisms were shown within DNA of different T cell leukemias. Burkitt lyphhomas, lymphoblastoid cell lines, and DNA of healthy individuals. One of the five clones isolated with the S region probe was evidently localized to chromosome 2 and/or 40 and showed a complex hybridisation pattern with several different human DNAs. S homologous sequences of another clone are most likely localized on chromosome 1. It is possible that these Ig indenpendent S sequences have arisen by amplification and transposition and that they are involved in genetic recombination.  相似文献   

10.
One of the introns of the phosphofructokinase gene was sequenced and analyzed in seven species of endemic Baikalian gastropods of the family Baicaliidae. The intron length differed even between sister species. Along with relatively few single nucleotide substitutions, extended deletions and insertions accumulated during the evolution of the intron. The number of deletions/insertions did not correlate with the genetic distance estimated for the species by comparing the sequences of a mitochondrial DNA fragment. The deduced secondary structure markedly differed even between sister species, although a consensus motif was detectable. Since long RNA stems that appeared and disappeared in the course of evolution may contain regulatory elements, the evolution of the intron may be nonneutral.  相似文献   

11.
A Kumar  K S Rai 《Génome》1991,34(6):998-1006
The structure and genomic organization of a cloned 5.2-kb repetitive DNA fragment, H-85, isolated from the Aedes albopictus genome have been examined. In situ hybridization of the 3H-labeled H-85 DNA to the meiotic and mitotic chromosome preparations of Ae. albopictus shows that the sequences homologous to H-85 DNA are dispersed throughout the length of all three pairs of chromosomes. A similar pattern of in situ hybridization appears in Aedes seatoi, Aedes flavopictus, and Aedes aegypti. The study shows that the arrangement of sequences in the cloned 5.2-kb fragment is rare in the Ae. albopictus genome. Dot-blot hybridization reveals that the sequences homologous to H-85 DNA are present in 12 species of mosquitoes examined, belonging to six genera in subfamilies Culicinae ad Anophelinae. The H-85 sequences are also present in the genome of Mochlonyx velutinus of the nematocerous family Chaoboridae, earlier proposed as the ancestor of the mosquito family Culicidae. Although the sequences homologous to H-85 DNA are present in different species of mosquitoes, they have diverged in their structure and organization. The cloned 5.2-kb fragment is composed of elements of different and independently evolving repetitive DNA families.  相似文献   

12.
13.
Previous study has shown that the usual DNA marker for Norrie disease, the L1.28 probe which identifies the DXS7 locus, can recombine with the disease locus. In this study, we used a human ornithine aminotransferase (OAT) cDNA which detects OAT-related DNA sequences mapped to the same region on the X chromosome as that of the L1.28 probe to investigate the family with Norrie disease who exhibited the recombinational event. When genomic DNA from this family was digested with the PvuII restriction endonuclease, we found a restriction fragment length polymorphism (RFLP) of 4.2 kb in size. This fragment was absent in the affected males and cosegregated with the disease locus; we calculated a lod score of 0.602, at theta = 0.00. No deletion could be detected by chromosomal analysis or on Southern blots with other enzymes. These results suggest that one of the OAT-related sequences on the X chromosome may be in close proximity to the Norrie disease locus and represent the first report which indicates that the OAT cDNA may be useful for the identification of carrier status and/or prenatal diagnosis.  相似文献   

14.
This study presents restriction fragment length polymorphism (RFLP) and serological analyses of the immunoglobulin CH loci in a sample of 100 individuals from a Senegalese Mandenka population. The RFLP variability is mostly the result of large DNA insertions or deletions in the non-coding flanking regions of the IGHG genes, and to variable number of tandem repeat-like patterns within their 5′-switch sequences. However, part of the IGHG3 polymorphism also corresponds to a variable number of exons coding for the flexible hinge segment of the IgG3 antibody (the 4-exon and 3-exon forms, and a newly described 2-exon form). This diversity presents relevant associations with Gm haplotypes, suggesting that molecular rearrangements of the G3 hinge are related to the evolution of the Gm polymorphism. Non-significant correlation coefficients are found between Gm haplotypes and A2m alleles in the Mandenka, indicating that these loci may have reached equilibrium through recombination. The effect of recombination on linkage disequilibrium is more generally revealed, across the Ig CH genomic region, by a significant decrease of D′ values with increasing physical distances between the loci on the chromosome. Received: 9 August 1995 / Revised: 6 January 1996  相似文献   

15.
Genomes of Spiroplasma citri strains have rearranged frequently during their evolution, partly due to multiple integrated sequences of spiroplasma viruses. To understand better the role of viral sequences in genome evolution, we examined available nucleotide sequences of viruslike elements in the S. citri chromosome. Comparison of integrated and nonintegrated sequences of spiroplasma virus SpV1-C74 DNA suggested that it is an encapsidated form of the circular transposition intermediate belonging to an insertion sequence (IS3) family member. One SpV1-C74 viral DNA fragment was identified as interrupting the remains of a DNA adenine modification methylase gene. A viral DNA insertion of SpV1-R8A2 B DNA had hallmarks of having suffered an internal deletion by a site-specific recombination system. Homologous recombination likely was responsible for several deletions within viral DNA. A homologous recombination event was inferred between part of a viral DNA insertion and a similar chromosomal sequence. Dispersed sequences from SpV1-like C4 open reading frames (ORFs) were identified as involved in a complex deletion-inversion event. Thus, SpV1-like sequences likely have altered spiroplasma genomes by inserting within active genes, destroying their function, by providing targets for site-specific recombination, by mediating deletions of sequences adjacent to their integration sites, and by providing targets for homologous recombination, leading to inversions.  相似文献   

16.
A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.  相似文献   

17.
Safronova LD  Shustrova IV  Ryskov AP 《Genetika》2000,36(11):1454-1463
Modern data on the structure and evolution of the t complex are discussed. The t complex is a series of inversions in the proximal region of murine chromosome 17; it contains a set of genes that determine its predominant transmission to the offspring of heterozygous males. Variants of structural organization of this genetic system (t haplotypes) have been found in wild populations of four species of genus Mus (M. domesticus, M. musculus, M. molossinus, and M. castaneus), but not in representatives of other, evolutionarily remote species of this genus. The so-called vertical, horizontal, and introgressive hypotheses are discussed of the origin and evolution of the t complex. Based on population genetic studies and molecular analysis a new hypothesis on the origin of the t-complex is put forward. This hypothesis is a synthesis between the vertical and horizontal models and assumes that all known t haplotypes had a common ancestral chromosome 17 carrying a proximal inversion.  相似文献   

18.
In a previous phylogeographic study of the rodent Calomys musculinus, 24 haplotypes of the mitochondrial DNA D-loop region were detected using the restriction fragment length polymorphism technique (PCR-RFLP). Seven percent of the individuals showed patterns in which the sum of the sizes of the restriction fragments exceeded the size of the original PCR product. In the present paper we analyze possible causes of these atypical haplotypes. PCR products were cloned, and two or three different clones from a single individual were detected by their RFLP patterns. Nine clones with different restriction patterns were selected for sequence analyses. A maximum parsimony phylogenetic analysis revealed two well-supported paraphyletic groups. One group comprised sequences showing low nucleotide divergence compared with the most common haplotypes detected in the phylogeographic study. The other group was basal to the three species of Calomys other than C. musculinus included in the study; the mutations in the short portion of the cytochrome b gene amplified corresponded to 12 amino acid substitutions. The results suggest that two independent insertions of mtDNA sequences into the nucleus occurred; these sequences would co-amplify in the PCR procedure. Identification of pseudogenes is crucial to obtain reliable reconstruction of the intraspecific genealogy in phylogeographic studies.  相似文献   

19.
A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes   总被引:15,自引:0,他引:15  
R Feil  P Aubourg  R Heilig  J L Mandel 《Genomics》1990,6(2):367-373
By using cosmid walking, we have cloned a 195-kb region from chromosome band Xq28 that encompasses the red and green color pigment genes and 85 kb of flanking sequences. This has allowed us to confirm that the color pigment genes are within very homologous units arranged in tandem array. Each unit contains two BssHII sites and one NruI site that are frequently methylated in male leukocyte DNA. A NotI and an EagI site are present 6 kb upstream from the red pigment gene promoter; the NotI site was shown to be unmethylated in the active X chromosome in leukocytes and may represent a CpG island for the whole cluster. We have identified another CpG island, 61 kb 3' from the last green pigment gene, that is unmethylated in leukocytes on the active X chromosome, but methylated on the inactive X. This island is flanked by sequences conserved in evolution and may thus correspond to an expressed gene. We also describe an informative three-allele restriction fragment length polymorphism within the pigment gene cluster.  相似文献   

20.
The principal sources of genetic variation that can be assayed with restriction enzymes are base substitutions and insertions/deletions (indels). The likelihood of detecting indels as restriction fragment length polymorphisms (RFLPs) is determined by the size and frequency of the indels, and the ability to resolve small indels as RFLPs is limited by the distribution of restriction fragment sizes. In this study, we use aligned sequences from the indica and japonica subspecies of rice ( Oryza sativa L.) to quantify and compare the ability of restriction enzymes to detect indels. We look specifically at two abundant transposable element-derived indel sources: miniature inverted repeat transposable elements (MITEs) and long terminal repeat (LTR) retroelements. From this analysis we conclude that indels rather than base substitutions are the prevailing source of the polymorphism detected in rice. We show that, although MITE derived indels are more abundant than LTR-retroelement derived indels, LTR-retroelements have a greater capacity to generate visible restriction fragment length polymorphism because of their larger size. We find that the variation in the detectability of indels among restriction enzymes can be explained by differences in the frequency and dispersion of their restriction sites in the genome. The parameters that describe the fragment size distributions obtained with the restriction enzymes are highly correlated across the sequenced genomes of rice, Arabidopsis and human, with the exception of some extreme deviations in frequency for particular recognition sequences corresponding to variations in the levels and modes of DNA methylation in the three disparate organisms. Thus, we can predict the relative ability of a restriction enzyme to detect indels derived from a specific source based on the distribution of restriction fragment sizes, even when this is estimated for a distantly related genome.Electronic Supplementary Material Supplementary Material is available in the online version of this article at Communicated by M.-A. Grandbastien  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号