首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined how local forearm temperature (Tloc) affects the responsiveness of the cutaneous vasculature to a reflex drive for vasoconstriction. We observed responses in forearm blood flow (FBF) and arterial blood pressure to a 5-min bout of supine leg exercise of moderate intensity (125-175 W) after the forearm had been locally warmed to 36, 38, 40, or 42 degrees C for 48 min. With exercise, FBF fell by 1.82 +/- 0.23, 4.06 +/- 0.58, and 3.64 +/- 1.48 ml X 100 ml-1 X min-1 at 36, 38, and 40 degrees C, respectively, and rose by 2.16 +/- 0.57 ml X 100 ml X min-1 at a Tloc of 42 degrees C (mean +/- SE). Forearm vascular conductance (FVC) fell with the onset of exercise by averages of 2.77 +/- 0.57, 7.02 +/- 0.51, 5.36 +/- 0.85, and 4.17 +/- 0.79 ml X 100 ml-1 X min-1 X 100 mmHg-1 at 36, 38, 40, and 42 degrees C, respectively. Second-order polynomial regression analysis indicated that the reductions in FVC were greatest near a Tloc of 39 degrees C and that at a Tloc of 40 or 42 degrees C the cutaneous vasoconstrictor response to the onset of exercise is attenuated. Although elevated Tloc can be used to increase base-line FBF levels to make cutaneous vasoconstrictor responses more obvious, the direct effects of Tloc on this response must also be considered. We conclude that the optimum Tloc for observing reflex cutaneous vasoconstriction is near 39 degrees C.  相似文献   

2.
3.
4.
The paper sought to determine the exercise intensity where the slow component of oxygen uptake (Vo(2)) first appears in decremental work load exercise (DLE). Incremental work load exercise (ILE) was performed with an increment rate of 15 watts (W) per minute. In DLE, power outputs were decreased by 15 W per minute, from 120 (DLE(120)), 160 (DLE(160)), 200 (DLE(200)) and 240 (DLE(240)) W, respectively. The slopes of Vo(2) against the power output were obtained in the lower section from 0 to 50 W in all DLEs, and in the upper section from 80 to 120 W in DLE(160) and from 100 to 150 W in DLE(200) and DLE(240). The power output at exhaustion in ILE was 274 +/- 20 W. The power output at the ventilatory threshold (VT) obtained in ILE was 167 +/- 22 W. The initial power output in DLE(160) was near the power output at VT. The slopes obtained in the upper sections were 11.4 +/- 0.9 ml x min(-1) x W(-1)1 in DLE(160), 12.8 +/- 0.8 ml x min(-1) x W(-1) in DLE(200), and 14.8 +/- 1.1 ml x min(-1) x W(-1) in DLE(240). The slope obtained in DLE(120) was 10.9 +/- 0.6 ml x min(-1). There were no differences in slope between the upper and lower sections in DLE(160) but there were significant differences in slopes between the upper and lower sections in DLE(200) and DLE(240). Thus, the slow component, which could be observed as a steeper slope in DLE, began to increase when the initial power output in DLE was near to VT.  相似文献   

5.
Graded cutaneous vascular responses to dynamic leg exercise   总被引:2,自引:0,他引:2  
The cutaneous vascular conductance-esophageal temperature (CVC-Tes) relationship was examined at five work loads (75-200 W) in each of four men to find whether there is a role for exercise intensity in the control of skin blood flow (SkBF). Several factors contributed to our evaluation of the CVC-Tes relationship during work. Laser-Doppler velocimetry (LDF) provided a continuous measure of SkBF that is not influenced by underlying muscle blood flow. Local warming to 39 degrees C at the site of measurement of SkBF provided a consistent skin temperature and facilitated observation of changes in LDF. Mean arterial pressure was measured noninvasively once per minute to calculate CVC. Supine exercise minimized baroreceptor-induced cutaneous vasoconstriction. Our major finding was that the internal temperature at which CVC began to rise during exercise (CVC threshold) was graded with work load beyond 125 W (P less than 0.05). In that range the CVC threshold increased by 0.16 degrees C for every increment of 25 W. The CVC threshold was never reached at the highest work load in three of the four subjects. There was no consistent effect of work load on the slope of the CVC-Tes relationship or on the internal temperature at which sweating began during exercise (sweat rate threshold). We conclude that the level of work beyond 125 W affects the CVC-Tes relationship in a graded fashion, principally through shifts in threshold.  相似文献   

6.
7.
This study was designed to evaluate the relative importance of intended effort ("central command") and of the absolute intensity of dynamic exercise to the cutaneous vasoconstrictor response to the onset of exercise in humans. Skin blood flow (laser-Doppler flowmetry) was measured from the forearm in six healthy individuals during 3-min periods of high- and low-intensity exercise with and without partial neuromuscular blockade. Cutaneous vascular conductance (CVC) was calculated from the ratio of skin blood flow to mean arterial pressure and expressed as a percent change from rest. A rating of perceived exertion (RPE) was expressed as a subjective measure of intended effort. Under control conditions, CVC decreased by 22% (median; range 7-42%, P less than 0.05) during high-intensity exercise [218 (186-268) W; RPE 16 (14-19) exertion units]. In contrast, during control low-intensity exercise [106 (88-128) W; RPE 10 (9-14) exertion units], during low-level exercise with curare [77 (54-98) W; RPE 13 (11-16) exertion units], and during maximal exercise with curare [106 (88-124) W; RPE 19 (18-20) exertion units], CVC did not change significantly. These results suggest that factors related to the activity of the exercising muscle and its metabolism rather than intended effort determine the cutaneous vasoconstrictor response to the initiation of intense dynamic exercise in humans.  相似文献   

8.
Present study was undertaken to elucidate possible distortion of phase response and amplitude response of various respiratory parameter such as VO2, VCO2 and VE to sinusoidal work load by comparing model analysis with manual analysis. Also, an attempt was made to determine whether there is any relationship between the characteristics of response of these parameters and the aerobic capacity of subjects. Six healthy male subjects were performed exercise on an electrically braked bicycle ergometer for 32 min. The work load was varied sinusoidally between 30 watts and 60% VO2max being under anaerobic threshold with periods from 1 to 16 min. These parameters were determined in breath-by-breath mode with a computer system and mass spectrometer. In model analysis, amplitude and phase responses were well described by first order exponential model, and strong correlations were observed between magnitude of phase response or time constant of amplitude response and aerobic capacity. Manual analysis revealed that respiratory responses to sinusoidal work load are not completely sinusoidal but somewhat distorted forming saw-tooth waves with steeper downslopes.  相似文献   

9.
Changes in sweat rate on the palm and on the general body surface in response to stepwise increases and decreases in work load during exercise on a bicycle ergometer were examined in relation to body temperature and heart rate in six male subjects (three trained and three untrained), in an attempt to evaluate thermal and nonthermal factors responsible for those changes. In all the untrained subjects, a transient, marked increase in palmar sweat rate was observed upon an abrupt increase (and occasionally upon an abrupt decrease) in work, while an increase in sweat rate on the general body surface was also rapid and marked. On the other hand, in all the trained subjects, palmar sweat rate was low and hardly showed a substantial increase in response to an abrupt increase in work load, to which sweating on the general body surface responded slowly by a gradual increase. While sweat rate on the general body surface showed a significant correlation with esophageal temperature and with heart rate, palmar sweat rate was not correlated with esophageal temperature but was significantly correlated with heart rate. Moreover, repeated increases and decreases in work load often led to progressive weakening of palmar sweating due apparently to the development of habituation. The present results suggest that responses of sweating to stepwise changes in work load are not solely dependent upon the thermoregulatory mechanism but are affected considerably by increase and decrease in psychic excitement and/or those in discharges of the sympathetic nervous system accompanying changes in work load.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Seventeen women (mean age 31 yr) participated in a training program divided into an initial 9-wk period and a subsequent 52-wk period, during which time 6 continued to exercise and the remainder detrained. Improvements in VO2max were significant (+34%) during the initial 9 wk and small (+5%) for the final 52 wk. Four women who stopped training showed a decrease in VO2max (-10%) during the last phase. During the initial 9 wk, central adaptation was important, with SV showing an increase of 28% at 80% VO2max. Peripheral adaptation (a-v O2 difference) was unchanged. Subjects who trained an additional 52 wk showed a slight drop in SV at submaximal work loads from the initial increase following the first 9 wk. When compared with the initial test the change at 9 wk in peripheral adaptation was a small and nonsignificant rise, followed by a significant increase at 61 wk. Women who are very unfit initially (predicted VO2max of 28 ml/kg-min), apparently adapt to the initial training with a central change followed by a much stronger peripheral adaptation during a longer training program.  相似文献   

12.
13.
14.
15.
The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2 max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass have not previously been defined. Six healthy men performed four types of dynamic exercise--one-arm curl, one-arm cranking, and one- and two-leg cycling at four different relative work loads--25, 50, 75, and 100% of VO2 max for the corresponding muscle group. VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75%, respectively, of that for maximal two-leg cycling. Cardiac output was linearly related to VO2 with a similar slope and intercept for each type of exercise. Heart rate at a given %VO2 max was higher with larger active muscle mass. In relation to %VO2 max, systemic resistance was lower and plasma catecholamine levels were higher with larger active muscle mass. The cardiovascular responses to exercise are determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systemic oxygen transport and utilization.  相似文献   

16.
17.
Effect of free radicals on pulmonary vascular response to acetylcholine.   总被引:1,自引:0,他引:1  
We describe a model of pulmonary endothelial injury caused by electrolysis-generated free radicals. Rabbit lungs were perfused in situ with Krebs solution at 37 degrees C containing 30 microM indomethacin. Electrolysis of this solution for 2 min, with a constant DC current of 20 mA, caused pulmonary vasoconstriction during the passage of current and converted subsequent acetylcholine-induced vasodilation to vasoconstriction. Electrolysis also inhibited endothelial-dependent vasodilation due to the calcium ionophore A23187 but not that due to sodium nitroprusside, suggesting that smooth muscle function was unaltered, while that of the endothelium of the lung is specifically modified by the stimulus. These effects were prevented by a mixture of superoxide dismutase and catalase or by sodium salicylate, which removes hydroxyl radicals from solution after electrolysis. Electrolysis-induced endothelial damage was less functionally obvious when electrolysis was applied during recirculation of Krebs solution, perhaps because recirculating perfusion may trigger release of either free radical scavengers or other protective substances. This technique offers a simple reproducible model to study free radical-related damage of endothelium in the intact lung.  相似文献   

18.
19.
The effect of exogenous dopamine on the development of exercise hyperpnea was studied. Using a bicycle ergometer, five subjects performed repetitive square-wave work-load testing from unloaded pedaling to 80% of each subject's estimated anaerobic threshold. The breath-by-breath ventilation (VE), CO2 production (VCO2), and O2 consumption (VO2) responses were analyzed by curve fitting a first-order exponential model. Comparisons were made between control experiments and experiments with a 3-micrograms X kg-1 X min-1 intravenous infusion of dopamine. Steady-state VE, VCO2 and VO2 were unchanged by the dopamine infusion, both during unloaded pedaling and at the heavier work load. The time constants for the increase in VE (tau VE) and VCO2 (tau CO2) were significantly (P less than 0.05) slowed (tau VE = 56.5 +/- 16.4 s for control, and tau VE = 76.4 +/- 26.6 s for dopamine; tau CO2 = 51.5 +/- 10.6 s for control, and tau CO2 = 64.8 +/- 17.4 s for dopamine) (mean +/- SD), but the time constant for VO2 (tau O2) was not significantly affected (tau O2 = 27.5 +/- 11.7 s for control, and tau O2 = 31.0 +/- 10.1 s for dopamine). We conclude that ablation of carotid body chemosensitivity with dopamine slows the transient ventilatory response to exercise while leaving the steady-state response unaffected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号