首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent study determined that cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts degraded angiotensins and kinins via neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11) and aminopeptidase N (APN; EC 3.4.11.2). Due to the possible importance of other peptides to skeletal muscle blood flow and function, the present study looked specifically at the metabolism of the neurokinins substance P (SP) and neurokinin A (NKA) by skeletal muscle peptidases. The results show that SP is degraded not only by NEP-24.11, but also sequentially by dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5)/APN. NKA is unaffected by DAP IV but is metabolized by NEP-24.11 and APN. NEP-24.11 was inhibited by phosphoramidon (IC50 = 80 nM), thiorphan and ZINCOV, DAP IV by diprotin A (IC50 = 8 μM), and APN by amastatin (IC50 = 50 nM) and bestatin (IC50 = 100 μM). Skeletal muscle myocyte and fibroblast metabolism of SP and NKA may regulate local skeletal muscle vascular and extravascular functions including SP- and NKA-mediated nerve-induced vasodilation. Inhibition of both NEP-24.11 and DAP IV/APN may increase skeletal muscle blood flow and decrease peripheral vascular resistance via potentiation of local neurokinin levels.  相似文献   

2.
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (<1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15–5.91 nmol/min/ml), which sequentially converted SP to SP(3–11) and SP(5–11). In turn, the SP(5–11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2–25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5–11) for AmM ranged from 32.7 to 123 μM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76–10.8 nmol/min/ml; Km=90.7 μM. These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.  相似文献   

3.
Atrial natriuretic peptide (ANP), a 28-residue peptide with cardiovascular and renal effects, is rapidly cleared from the circulation. Beside renal clearance, an extra-renal metabolism by the enzyme neutral endopeptidase-24.11 (NEP-24.11) has been proposed, since specific NEP-24.11-inhibitors increase endogenous plasma-ANP. NEP-24.11 is present in rat lung but its significance for ANP hydrolysis within the lung is unclear. The aim of this study was to investigate a possible degradation of rat ANP in a membrane preparation from rat lung. Hydrolysis products of ANP were separated by HPLC and further characterized by a pulmonary artery bioassay, by radioimmunoassay with different antisera, by peptide sequencing and by masspectrometry. Rat pulmonary membranes degraded ANP to one main metabolite lacking biological activity and with poor cross-reactivity to an antiserum recognising the central ring-structure of the peptide. Formation of the hydrolysis product was prevented by the NEP-24.11-inhibitor phosphoramidon (1 microM). Peptide sequencing of the metabolite revealed a cleavage between Cys7 and Phe8, which was confirmed by mass-spectrometry. The metabolite had an HPLC elution time identical to that of the product formed by purified porcine NEP-24.11. These findings suggest that ANP is metabolized and inactivated by endopeptidase-24.11 in rat lungs, the first organ exposed to ANP released from the heart.  相似文献   

4.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

5.
The effects of intracerebroventricular administrations of three natural angiotensins, angiotensin I (ANG I 3.8 X 10-11-9.4 X10-10 mol/kg body weight), II (9.6 X 10-12-2.4 X 10-10 mol/kg body weight) and III (2.7 X 10-10 2.5 X 10-9 mol/kg body weight) on systemic blood pressure were investigated in conscious rats. Angiotensin II (ANG II), ANG I and angiotensin III (ANG III), increased blood pressure in a dose-related manner. The order of potency of angiotensins was ANG II greater than ANG I greater than ANG III. The intraventricular administration of a converting enzyme inhibitor (SQ 14225, 6.9 X10-8 mol/kg) abolished the central effect of ANG I, while an angiotensin II analogue ([Sar1-Ala8]ANG II, 1.1 X 10-8 mol/kg) administered intraventricularly inhibited the central pressor effects of these three angiotensins. These results suggest that ANG II is a main mediator of the renin-angiotensin system in the central nervous system.  相似文献   

6.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

7.
Aerobic metabolic flux depends on the diffusion of high-energy phosphate molecules (e.g., ATP and phosphocreatine) from the mitochondria to cellular ATPases, as well as the diffusion of other molecules (e.g., ADP, Pi) back to the mitochondria. Here, we develop an approach for evaluating the influence of intracellular metabolite diffusion on skeletal muscle aerobic metabolism through the application of the effectiveness factor (η). This parameter provides an intuitive and informative means of quantifying the extent to which diffusion limits metabolic flux. We start with the classical approach assuming an infinite supply of substrate at the fiber boundary, and we expand this model to ultimately include nonlinear boundary and homogeneous reactions. Comparison of the model with experimental data from a wide range of skeletal muscle types reveals that most muscle fibers are not substantially limited by diffusion (η close to unity), but many are on the brink of rather substantial diffusion limitation. This implies that intracellular metabolite diffusion does not dramatically limit aerobic metabolic flux in most fibers, but it likely plays a role in limiting the evolution of muscle fiber design and function.  相似文献   

8.
Creatine kinase is a crucial enzyme for brain, heart and skeletal muscle energy homeostasis, and a decrease of its activity has been associated with cell death. Many biological properties have been attributed to ruthenium complexes. In this context, this work was performed in order to evaluate creatine kinase activity from rat brain, heart and skeletal muscle (quadriceps) after administration of ruthenium complexes, trans-[RuCl(2)(nic)(4)] (nic=3-pyridinecarboxylic acid) 180.7 micromol/kg (complex I), trans-[RuCl(2)(i-nic)(4)] (i-nic=4-pyridinecarboxylic acid) 13.6 micromol/kg (complex II), trans-[RuCl(2)(dinic)(4)] (dinic=3,5-pyridinedicarboxylic acid) 180.7 micromol/kg (complex III) and trans-[RuCl(2)(i-dinic)(4)] (i-dinic=3,4-pyridinedicarboxylic acid) 180.7 micromol/kg (complex IV). Our results showed that complex I caused inhibition of creatine kinase activity in hippocampus, striatum, cerebral cortex, heart and skeletal muscle. Besides, complex II did not affect the enzyme activity. complexes III and IV increased creatine kinase activity in hippocampus, striatum, cerebral cortex and heart, but not in skeletal muscle. Besides, none of the complexes in vitro altered creatine kinase activity, suggesting that enzymatic activity is indirectly affected by complexes I, III and IV. It is believed that diminution of creatine kinase in brain of rats caused by complex I may be related to results from other study reporting memory impairment caused by the same complex. Further research is necessary in order to elucidate the effects of ruthenium complexes in other important metabolic enzymes.  相似文献   

9.
The present investigation determined that native angiotensins II and III (ANG II and III) were equipotent as pressor agents when ICV infused in alert rats, whereas native angiotensin IV (ANG IV) was less potent. An analogue of each of these angiotensins was prepared with a hydroxyethylamine (HEA) amide bond replacement at the N-terminus, yielding additional resistance to degradation. These three angiotensin analogues, HEA-ANG II, HEA-ANG III, and HEA-ANG IV, were equivalent with respect to maximum elevation in pressor responses when ICV infused; and each evidenced significantly extended durations of effect compared with their respective native angiotensin. Comparing analogues, HEA-ANG II had a significantly longer effect compared with HEA-ANG III, and HEA-ANG IV, whereas the latter were equivalent. Pretreatment with the AT1 receptor subtype antagonist, Losartan (DuP753), blocked subsequent pressor responses to each of these analogues, suggesting that these responses were mediated by the AT1 receptor subtype. Pretreatment with the specific AT4 receptor subtype antagonist, Divalinal (HED 1291), failed to influence pressor responses induced by the subsequent infusion of these analogues. These results suggest an important role for Ang III, and perhaps ANG IV, in brain angiotensin pressor responses mediated by the AT1 receptor subtype.  相似文献   

10.
The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-beta and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.  相似文献   

11.
The nonapeptide angiotensin II (ANG II) induces vasoconstriction via the ANG II type I receptor, while its splice product ANG-(1-7) elicits an antihypertensive effect via the Mas receptor. Although a critical role of ANG II in the etiology of skeletal muscle insulin resistance is well documented, the role of the ANG-(1-7)/Mas receptor axis in this context is poorly understood. Therefore, we determined whether ANG-(1-7) is effective in ameliorating the negative effects of ANG II on insulin-stimulated insulin signaling and glucose transport activity in isolated soleus muscle from normotensive lean Zucker rats. ANG II alone (500 nM for 2 h) decreased insulin-stimulated glucose transport activity by 45% (P < 0.05). In the presence of 500-1000 nM ANG-(1-7), insulin-stimulated glucose transport activity in muscle exposed to ANG II improved by ∼30% (P < 0.05). Moreover, ANG-(1-7) treatment increased Akt Ser473 phosphorylation (47%, P < 0.05) without an effect on glycogen synthase kinase-3β Ser9 phosphorylation. The dependence of ANG-(1-7) action on the Mas receptor was assessed using A779 peptide, a selective Mas receptor antagonist. The positive effects of ANG-(1-7) on insulin-stimulated glucose transport activity and Akt Ser473 phosphorylation in soleus muscle were completely prevented in presence of 1000 nM A779. In conclusion, the present study demonstrates that ANG-(1-7), via a Mas receptor-dependent mechanism, can ameliorate the inhibitory effect of ANG II on glucose transport activity in mammalian skeletal muscle, associated with enhanced Akt phosphorylation. These results provide further evidence supporting the targeting of the renin-angiotensin system for interventions designed to reduce insulin resistance in skeletal muscle tissue.  相似文献   

12.
13.
Summary FITC-labelled antibodies against native actin from chicken gizzard smooth muscle (Gröschel-Stewart et al., 1976) have been used to stain cultures of guinea-pig vas deferens and taenia coli, rabbit thoracic aorta, rat ventricle and chick skeletal muscle. The I-band of myofibrils of cardiac muscle cells and skeletal muscle myotubes stains intensely. In isolated smooth muscle cells, the staining is located exclusively on long, straight, non-interrupted fibrils which almost fill the cell. Smooth muscle cells which have undergone morphological dedifferentiation to resemble fibroblasts with both phase-contrast microscopy and electronmicroscopy still stain intensely with the actin antibody. In those muscle cultures which contain some fibroblasts or endothelial cells, the non-muscle cells are not stained with the actin antibody even when the reactions are carried out at 37° C for 1 h or after glycerination. Prefusion skeletal muscle myoblasts also do not stain with this antibody.It is concluded that the actin antibody described in this report is directed against a particular sequence of amino acids in muscle actin which is not homologous with non-muscle actin. The usefulness of this antibody in determining the origin of cells in certain pathological conditions such as atherosclerosis is discussed.This work was supported by the Life Insurance Medical Research Fund of Australia and New Zealand, the National Heart Foundation of Australia, the Deutsche Forschungsgemeinschaft and the Wellcome Trust (London). We thank Janet D. McConnell for excellent technical assistance  相似文献   

14.
We studied a mouse doubly homozygous for mutations in the genes encoding malic enzyme (EC1.1.1.40) and cytosolic glycerol phosphate dehydrogenase (EC 1.1.1.8) (cGPD). This mouse, which we call the mmgg mouse and which is the product of intercrosses between the Mod-1 mouse and the BALB/cHeA mouse, lacks activity of both enzymes. Like both parental strains the mmgg mouse is completely normal in appearance. cGPD is one of the two enzymes that catalyze the reactions of the glycerol phosphate shuttle. The activity of the other enzyme of the glycerol phosphate shuttle, mitochondrial glycerol phosphate dehydrogenase (EC 1.1.99.5) (mGPD), is abundant in tissues, such as brain, skeletal muscle and the pancreatic islet, suggesting that the glycerol phosphate shuttle is important in these tissues which rapidly metabolize glucose. Cytosolic malic enzyme activity is important for shuttles which transport NADPH equivalents from mitochondria to the cytosol. The major finding of the study was a highly abnormal metabolite pattern in tissues of the mmgg mouse suggesting a block in the glycerol phosphate shuttle due to cGPD deficiency. The metabolite pattern did not suggest that malic enzyme deficiency caused an abnormality. Tissue levels of glycerol phosphate (low) and dihydroxyacetone phosphate (high) were only abnormal in skeletal muscle. Glycolytic intermediates, situated at or before the triose phosphates in the pathway, such as fructose bisphosphate and glyceraldehyde phosphate were increased depending on the tissue. Taken together with previous extensive data on the mouse deficient only in cGPD this suggests a block in glycolysis at the step catalyzed by glyceraldehyde phosphate dehydrogenase caused by an abnormally low NAD/NADH ratio resulting from a nonfunctional glycerol phosphate shuttle. Consistent with this idea the lactate/pyruvate ratio was high in skeletal muscle signifying a low cytosolic NAD/NADH ratio. The mmgg mouse was normal in all other factors studied including blood glucose and serum insulin levels, pancreatic islet mass, insulin release from isolated pancreatic islets, as well as the activities of five metabolic enzymes, including mGPD, in liver, kidney, skeletal muscle and pancreatic islets. cGPD enzyme activity was undetectable in pancreatic islets, 0.5% of normal in liver, and 2.1% of normal in kidney and skeletal muscle. Malic enzyme activity was undetectable in these same tissues.  相似文献   

15.
We have previously shown that skeletal muscle angiogenesis induced by electrical stimulation is significantly attenuated when SS-13BN/Mcwi rats are fed a high-salt diet. This effect was associated with a large increase in endothelial cell (EC) apoptosis. We hypothesized that the low levels of ANG II during high-salt diet would increase EC apoptosis and consequently diminish the angiogenic response. To test this hypothesis, a series of in vitro and in vivo studies was performed. EC apoptosis and viability were evaluated after incubation with ANG II under serum-free conditions. After 24 h of incubation, ANG II increased EC viability and Bcl-2-to-Bax ratio along with a dose-dependent decrease in EC apoptosis. This effect was blocked by the ANG II type 1 receptor antagonist losartan. To confirm our in vitro results, ANG II (3 ng.kg(-1).min(-1)) was chronically infused in rats fed a high-salt diet (4% NaCl). ANG II decreased EC apoptosis and produced a significant increase (40%) in skeletal muscle angiogenesis after electrical stimulation. These in vivo results were in agreement with our in vitro results and demonstrate that the attenuation of ANG II levels during a high-salt diet may induce EC apoptosis and consequently block the angiogenic response induced by electrical stimulation. Furthermore, under normal conditions, ANG II increases EC viability and protects EC from apoptosis possibly by inactivation of the mitochondrial apoptotic pathway.  相似文献   

16.
17.
Angiotensin-converting enzyme 2 (ACE2) preferentially forms angiotensin-(1-7) [ANG-(1-7)] from ANG II. We showed that cardiac ACE2 is elevated following treatment of coronary artery-ligated rats with AT1 receptor blockers (ARBs). Cardiac myocytes and fibroblasts were isolated from neonatal rats to determine the molecular mechanisms for the ACE2 upregulation by ARB treatment. ANG II significantly reduced ACE2 activity and downregulated ACE2 mRNA in cardiac myocytes, effects blocked by the ARB losartan, indicating that ANG II regulates ACE2. ANG II also reduced ACE2 mRNA in cardiac fibroblasts; however, no enzyme activity was detected, reflecting the limited expression of ACE2 in these cells. Endothelin-1 (ET-1) also significantly reduced myocyte ACE2 mRNA. The reduction in ACE2 mRNA by ANG II or ET-1 was blocked by inhibitors of mitogen-activated protein kinase kinase 1, suggesting that ANG II or ET-1 activates extracellular signal-regulated kinase (ERK) 1/ERK2 to reduce ACE2. Although ACE2 mRNA was not affected by ANG-(1-7), both the ANG II- and ET-1-mediated reductions in ACE2 mRNA were blocked by the heptapeptide. The ANG-(1-7) modulatory effect was prevented by the ANG-(1-7) receptor antagonist [D-Ala7]-ANG-(1-7), indicating that the ANG-(1-7) response was mediated by a specific AT(1-7) receptor. Myocyte treatment with atrial natriuretic peptide (ANP) also reversed the ACE2 mRNA downregulation by ANG II or ET-1, whereas treatment with ANP alone was ineffective. These results indicate that multiple hypertrophic and anti-hypertropic peptides regulate ACE2 production in myocytes, suggesting that ACE2 expression in the heart is dependent upon the compliment and concentration of regulatory molecules.  相似文献   

18.
The myogenic control mechanisms that govern the basal tone in the internal anal sphincter (IAS) are not known. The present studies determined the autocrine regulation of ANG II in the IAS. The studies were performed in the freshly isolated smooth muscle cells (SMC) of the IAS. We determined the presence of ANG II precursor angiotensinogen (Angen), and the enzymes that convert it into ANG II, using functional, molecular biology, and immunocytochemical studies in rats. ANG II levels in the SMC were determined using ELISA. The IAS SMC generate ANG II at a rate severalfold higher than those from the adjoining smooth muscle of rectum (RSM). RT-PCR data show that IAS exclusively expresses significant higher levels of renin, Angen, and angiotensin-converting enzyme (ACE). These data were confirmed using Western blot analyses and immunocytochemistry. In the IAS SMC, H-77 (10 microM; renin inhibitor) and captopril (1 microM; ACE inhibitor) decreased the basal as well as Angen-increased levels of ANG II. The following functional data corroborate the role of renin-angiotensin system (RAS) in the IAS tone. Angen produced concentration-dependent shortening of the IAS SMC that was inhibited by H-77 and captopril. In addition, H-77 or captopril caused a concentration-dependent fall in the IAS tone vs. nontonic tissues. Basal tone in IAS is partially under the autocrine control of cellular RAS evident by the expression of mRNA coding Angen, renin, and ACE and translation to the respective proteins in the SMC.  相似文献   

19.
Angiotensin II (ANG II), generated by activation of local renin-angiotensin systems, is believed to play an important role in tissue repair and remodeling, in part via transforming growth factor-beta (TGF-beta). Angiotensin-converting enzyme (ACE) inhibitors have been shown to abrogate experimental lung injury via a number of potential mechanisms; however, the potentially fibroproliferative role for ANG II in the lung has not been characterized. We hypothesized that, after lung injury, ANG II would stimulate fibroblast procollagen synthesis and promote lung collagen deposition in rats. In vitro, ANG II was a potent inducer of procollagen production in human lung fibroblasts via activation of the type 1 receptor and, at least in part, via the autocrine action of TGF-beta. After bleomycin-induced lung injury, an increase in lung ANG II concentration was observed by day 3 that preceded increases in lung collagen and was maintained until death at day 21. Administration of an ACE inhibitor (ramipril) reduced ACE activity, ANG II concentration, TGF-beta expression, and collagen deposition. Losartan (an ANG II type 1 receptor antagonist) also attenuated the increase in TGF-beta expression and lung collagen deposition. These observations suggest that ANG II, possibly generated locally within the lung, may play an important role in the fibrotic response to acute lung injury, at least in part via the action of TGF-beta. ACE inhibitors and receptor antagonists, already widely used clinically, should be assessed as potential new therapies for fibrotic lung disease.  相似文献   

20.
P Kugler 《Histochemistry》1982,74(2):247-261
Biochemical fluorometric methods were used to investigate aminopeptidase A (APA; E.C.3.4.11.7) in the rat kidney homogenate and glomeruli and to compare it with aminopeptidase M (APM; E.C.3.4.11.2). It is shown that APA is a calcium-ion-dependent enzyme, while APM is not. To clarify the functional importance of APA and APM in the kidney, their activities were measured under the influence of angiotensins. Fluorimetric measurements in renal homogenate (with 2-naphthylamide derivatives as substrates), which represents mixed-enzyme tissue preparations containing a variety of peptidases besides APA and APM, showed a Km of 0.13 mM for APA and competitive inhibition of ANG II (K1 = 0.015 mM), and a Km of 0.24 for APM and competitive inhibition by ANG III (K1 = 0.003 mM). The remaining two angiotensins showed non-competitive inhibition of APA (ANG I, III) and APM (ANG I, II) in this preparation. For comparison purposes, fluorometric measurements were performed in microdissected glomeruli which contain only APA. A Km of 0.23 mM for the APA and a competitive inhibition of APA by ANG I and II were determined. Thus it was possible to show biochemically that APA is equivalent to angiotensinase A and that both APA and APM participate in angiotensin degradation in the kidney. APA initiating the breakdown of ANG I and II, and APM possibly continuing it in sequential fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号