首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Botulinum neurotoxin is a food poisoning agent produced by Clostridium botulinum. The neurotoxin is a 150-kDa protein that causes flaccid muscle paralysis by blocking neurotransmitter release at neuromuscular junctions. The neurotoxin is produced along with a group of neurotoxin associated proteins (NAPs), which protect it from the low pH and proteases of the gastrointestinal (GI) tract. We have isolated, for the first time, one of the major components of NAPs in a pure form. The isolated protein is a 33-kDa single polypeptide (Hn-33) that exhibits hemagglutination activity. Specific polyclonal antibodies against the Hn-33 are able to block the hemagglutination activity of the neurotoxin complex, which indicates that perhaps Hn-33 is the only strong hemagglutinating protein in the complex. The Hn-33 was found be resistant to trypsin and other protease digestion, a feature that could play a role in the protection of the neurotoxin in the GI tract during its toxicoinfection.  相似文献   

2.
Clostridium botulinum causes the food poisoning disease botulism by producing botulinum neurotoxin, the most potent toxin known. The neurotoxin is produced along with a group of neurotoxin-associated proteins, or NAPs, which protect it from the low pH and proteases of the gastrointestinal tract. Recently, we isolated one of the major components of NAPs, a 33-kDa hemagglutinin (Hn-33) [Fu et al. (1998), J. Protein Chem. 17, 53–60]. In this study, we present molecular properties of Hn-33 derived from several biochemical and biophysical techniques. Hn-33 in pure form requires a 66-fold lower concentration of sugar inhibition of its hemagglutination activity than in its complexed form with the neurotoxin and other NAPs. However, its protease resistance is not affected by sugar binding. Based on FT-IR and circular dichroism (CD) analysis, Hn-33 is a predominantly -sheet protein (74–77%). Hn-33 analysis by laser desorption mass spectrometry and size exclusion column chromatography reveals that it exists predominantly in a dimeric form in the aqueous solution. Even a very low concentration of SDS (0.05%) irreversibly destroyed the biological activity of Hn-33 by changing its secondary structure as revealed by far-UV CD analysis.  相似文献   

3.
Botulinum neurotoxin type A, the most toxic substance known to mankind, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs) through polycistronic expression of a clustered group of genes. Hemagglutinin-33 (Hn-33) is a 33 kDa subcomponent of NAPs, which is resistant to protease digestion, a feature likely to be involved in the protection of the botulinum neurotoxin from proteolysis. In order to fully understand the function of Hn-33, large amounts of Hn-33 will be needed without dealing with biosafety risks to grow large cultures of C. botulinum. There are difficulties to clone the genes with the high A + T contents produced by C. botulinum. We report here for the first time using the Gateway technology to clone functional Hn-33 that has been expressed in E. coli. The yield of the recombinant Hn-33 was about 12 mg per liter of E. coli culture. The recombinant Hn-33 folds well in aqueous solution as shown with circular dichroism spectra, resists temperature-denaturation, is totally resistant to trypsin proteolysis despite the presence of cleavage sites on the molecular surface, and maintains its biological activities comparable to the native Hn-33 hemagglutination.  相似文献   

4.
Zhou Y  Foss S  Lindo P  Sarkar H  Singh BR 《The FEBS journal》2005,272(11):2717-2726
Botulinum neurotoxin type A (BoNT/A), the most toxic substance known to mankind, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs) through polycistronic expression of a clustered group of genes. NAPs are known to protect BoNT against adverse environmental conditions and proteolytic digestion. Hemagglutinin-33 (Hn-33) is a 33 kDa subcomponent of NAPs that is resistant to protease digestion, a feature likely to be involved in the protection of the botulinum neurotoxin from proteolysis. However, it is not known whether Hn-33 plays any role other than the protection of BoNT. Using immunoaffinity column chromatography and pull-down assays, we have now discovered that Hn-33 binds to synaptotagmin II, the putative receptor of botulinum neurotoxin. This finding provides important information relevant to the design of novel anti-botulism therapeutic agents targeted to block the entry of botulinum neurotoxin into nerve cells.  相似文献   

5.
6.
S Cai  H K Sarkar  B R Singh 《Biochemistry》1999,38(21):6903-6910
Botulinum neurotoxins type A (BoNT/A), the most toxic substance known to man, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs), possibly through a polycistronic expression of a clustered group of genes. The botulinum neurotoxin complex is the only known example of a protein complex where a group of proteins (NAPs) protect another protein (BoNT) against acidity and proteases of the GI tract. We now report that NAPs also potentiate the Zn2+ endopeptidase activity of BoNT/A in both in vitro and in vivo assays against its known intracellular target protein, 25 kDa synaptosomal associated protein (SNAP-25). While BoNT/A exhibited no protease activity prior to reduction with dithiothreitol (DTT), the BoNT/A complex exhibited a high protease activity even in its nonreduced form. Our results suggest that the bacterial production of NAPs along with BoNT is designed for the NAPs to play an accessory role in the neurotoxin function, in contrast to their previously known limited role in protecting the neurotoxin in the GI tract and in the external environment. Structural features of BoNT/A change considerably upon disulfide reduction, as revealed by near-UV circular dichroism spectroscopy. BoNT/A in the reduced form adopts a more flexible structure than in the unreduced form, as also indicated by large differences in DeltaH values (155 vs 248 kJ mol-1) of temperature-induced unfolding of BoNT/A.  相似文献   

7.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

8.
Kukreja RV  Singh BR 《Biochemistry》2007,46(49):14316-14324
Seven serotypes of botulinum neurotoxins, the most toxic substances known to mankind, are each produced by different strains of Clostridium botulinum along with a group of neurotoxin-associated proteins (NAPs). NAPs play a critical role in the toxicoinfection process of botulism in addition to their role in protecting the neurotoxin from proteolytic digestion in the GI tract as well as from adverse environmental conditions. In this study we have investigated the effect of temperature on the structural and functional stability of BoNT/A complex (BoNT/AC) and BoNT/E complex (BoNT/EC). Although the NAPs in the two complexes are quite different, both groups of NAPs activate the endopeptidase activities of their BoNTs without any need to reduce the disulfide bonds between light and heavy chains of respective BoNTs. BoNT/AC attains optimum enzyme activity at the physiological temperature of 37 degrees C whereas BoNT/EC is maximally active at 45 degrees C, and this is accompanied by conformational alterations in its polypeptide folding at this temperature, leading to favorable binding with its intracellular substrate, SNAP-25, and subsequent cleavage of the latter. BoNT/A in its complex form is found to be structurally more stable against temperature whereas BoNT/E in its complex form is functionally better protected against temperature. Based on the analysis of isolated NAPs we have observed that the structural stability of the BoNT/AC is contributed by the NAPs. In addition to the unique structural conditions in which the enzyme remains active, functional stability of botulinum neurotoxins against temperature plays a critical role in the survival of the agent in cooked food and in food-borne botulism.  相似文献   

9.
Seven distinct strains of Clostridium botulinum (type A to G) each produce a stable complex of botulinum neurotoxin (BoNT) along with neurotoxin-associated proteins (NAPs). Type A botulinum neurotoxin (BoNT/A) is produced with a group of NAPs and is commercially available for the treatment of numerous neuromuscular disorders and cosmetic purposes. Previous studies have indicated that BoNT/A complex composition is specific to the strain, the method of growth and the method of purification; consequently, any variation in composition of NAPs could have significant implications to the effectiveness of BoNT based therapeutics. In this study, a standard analytical technique using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and densitometry analysis was developed to accurately analyze BoNT/A complex from C. botulinum type A Hall strain. Using 3 batches of BoNT/A complex the molar ratio was determined as neurotoxin binding protein (NBP, 124 kDa), heavy chain (HC, 90 kDa), light chain (LC, 53 kDa), NAP-53 (50 kDa), NAP-33 (36 kDa), NAP-22 (24 kDa), NAP-17 (17 kDa) 1:1:1:2:3:2:2. With Bradford, Lowry, bicinchoninic acid (BCA) and spectroscopic protein estimation methods, the extinction coefficient of BoNT/A complex was determined as 1.54 ± 0.26 (mg/mL)?1cm?1. These findings of a reproducible BoNT/A complex composition will aid in understanding the molecular structure and function of BoNT/A and NAPs.  相似文献   

10.
The purified progenitor toxin of Clostridium botulinum type C strain 6814 (C-6814) forms a large complex composed of 150-kDa neurotoxin (NT), 130-kDa nontoxic-nonhemagglutinin (NTNHA), and hemagglutinin (HA) components. The HA component consisted of a mixture of several subcomponents with molecular masses of 70, 55, 33, 26-21 and 17 kDa. We isolated the HA subcomponents from the progenitor toxin by chromatography in the presence of denaturants. The isolated HA subcomponents, designated as i-HA-33, i-HA-55, i-HA-70 and i-HA-33/17, were nearly homogeneous on SDS/PAGE, but the HA-17 and HA-26-21 components were not purified. Some HA subcomponents, designated as f-HA-33 and f-HA-33/17 complex, existed free of the progenitor toxin in the culture medium and they were separately purified. Every HA subcomponent so far isolated shows binding activity to erythrocytes. The hemagglutination activities of each HA subcomponent had a titer of 25 for the f-HA-33/17 complex, and below 23 for the other f- and i-HA subcomponents, while the parent progenitor L toxin was 28. The reconstitution of various combinations of f- and i-HA subcomponents was attempted via mixing and tested for hemagglutination activity. When the i-HA-33/17 complex and i-HA-55 were mixed, the hemagglutination activity was recovered to a titer of 29, which was slightly higher than that of the parent toxin. These data imply that a combination of at least HA-33, -17 and -55 subcomponents is required for full hemagglutination activity of the botulinum progenitor toxin, but each single HA subcomponent shows weak or no aggregation of erythrocytes.  相似文献   

11.
Botulinum Neurotoxin (BoNT) produced by the bacterium Clostridium botulinum as a complex with NAPs causes botulism. It has been known that the NAPs protect the toxin from both extremes of pHs and proteases of the GI tract. In an attempt to emulate the physiological conditions encountered by the toxin, we examined BoNT/A, BoNT/A complex, and NAPs under different pH conditions and monitored their structural characteristics by far-UV CD and thermal denaturation analysis. BoNT/A complex showed the maximum CD signal with a mean residue weight ellipticity of ?1.8 × 105° cm2/dmol at 222 nm at both acidic and neutral pHs. Thermal denaturation analysis revealed NAPs to be the most stable amongst the three protein samples examined. Interestingly and quite uniquely, at pH 2.5, there was an increase in CD signal for BoNT complex as a function of temperature, which correlated with the NAPs profile, indicating a shielding effect of NAPs on BoNT complex at low pH. Calculation of the weighted mean of the ellipticities at the Tm for thermal unfolding of toxin and NAPs at neutral and acidic pHs showed variation with that of BoNT complex, suggesting structural reorganization in BoNT complex upon the association of NAPs and BoNT. In conclusion, this study reveals the structural behavior of BoNT complex and NAPs with pH changes substantially, which could be quite relevant for BoNT survival under extreme pH conditions in vivo.  相似文献   

12.
Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins. Botulinum neurotoxins associate with neurotoxin‐associated proteins (NAPs) forming large complexes that are protected from the harsh environment of the gastrointestinal tract. However, it is still unclear how BoNT complexes as large as 900 kDa traverse the epithelial barrier and what role NAPs play in toxin translocation. In this study, we examined the transit of BoNT serotype A (BoNT/A) holotoxin, complex and recombinantly purified NAP complex through cultured and polarized Caco‐2 cells and, for the first time, in the small mouse intestine. Botulinum neurotoxin serotype A and NAPs in the toxin complex were detectable inside intestinal cells beginning at 2 h post intoxication. Appearance of the BoNT/A holotoxin signal was slower, with detection starting at 4–6 h. This indicated that the holotoxin alone was sufficient for entry but the presence of NAPs enhanced the rate of entry. Botulinum neurotoxin serotype A detection peaked at approximately 6 and 8 h for complex and holotoxin, respectively, and thereafter began to disperse with some toxin remaining in the epithelia after 24 h. Purified HA complexes alone were also internalized and followed a similar time course to that of BoNT/A complex internalization. However, recombinant HA complexes did not enhance BoNT/A holotoxin entry in the absence of a physical link with BoNT/A. We propose a model for BoNT/A toxin complex translocation whereby toxin complex entry is facilitated by NAPs in a receptor‐mediated mechanism. Understanding the intestinal uptake of BoNT complexes will aid the development of new measures to prevent or treat oral intoxications.  相似文献   

13.
The large-sized botulinum toxin complex (L-TC) is composed of botulinum neurotoxin (BoNT) and nontoxic proteins, e.g. nontoxic nonhemagglutinin (NTNHA) and three types of hemagglutinins (HAs; HA-33, HA-17 and HA-70). The nontoxic proteins play a critical role in L-TC oral toxicity by protecting the BoNT in the digestive tract, and facilitating absorption of the L-TC across the intestinal wall. Under alkaline conditions, the L-TC separates into BoNT and the nontoxic protein complex (NC). In this study, we established a two-step procedure to yield highly pure NC from the L-TC produced by Clostridium botulinum serotype D strain 4947 in which the NC was isolated from the L-TC by gel filtration under alkaline conditions followed by immunoprecipitation with an anti-BoNT antibody to remove contaminating BoNT from the NC fraction. Western blotting and electrophoretic analysis showed that the highly purified NC fraction had only very slight or no BoNT contamination. In addition, the purified NC fraction showed no intraperitoneal (ip) toxicity to mice at a dose of 38?ng per animal whereas the L-TC exhibited an ip median lethal dose of 0.38?ng per mouse. The highly purified NC displayed the same hemagglutination titer as the L-TC. The NC, as well as the L-TC, demonstrated cell binding and monolayer transport in the rat intestinal epithelial cell line IEC-6. Consequently, the highly purified NC can function as a ??delivery vehicle?? even without the BoNT.  相似文献   

14.
Clostridium botulinum serotype C strains produce a neurotoxin (BoNT) along with nontoxic proteins, including nontoxic nonhemagglutinin and three hemagglutinin subcomponents, HA-70, HA-33 and HA-17, to form a large toxin complex (L-TC). While L-TCs produced by serotype C strains usually exhibit hemagglutination (HA) activity via HA-33 binding to sialic acid on erythrocytes, serotype C strain Yoichi (C-Yoichi) L-TC exhibited neither HA nor binding activity towards erythrocytes, probably due to a C-terminal truncation of the HA-33 protein. However, here, we demonstrate that C-Yoichi L-TC newly showed full HA and binding activity towards neuraminidase-treated erythrocytes that was completely inhibited in the presence of galactose (Gal) or lactose (Lac). Binding of C-Yoichi L-TC to rat small intestine epithelial cells (IEC-6) treated with neuraminidase was also significantly enhanced compared with untreated IEC-6 cells. Similarly, the HA-33/HA-17 complex isolated from C-Yoichi L-TC also bound to neuraminidase-treated IEC-6 cells. The binding activity of both L-TC and HA-33/HA-17 was inhibited in the presence of Gal or Lac. Additionally, C-Yoichi L-TC adsorbed tightly to a lactose-affinity gel column. These results strongly suggest that the unusual recognition of the Gal moiety on the cells could be due to a variation and/or a truncation in the C-terminal-half of the unique C-Yoichi HA-33 protein.  相似文献   

15.
Type E botulinum neurotoxin is produced byClostridium botulinum along with a neurotoxin binding protein which helps protect the neurotoxin from adversepH, temperature, and proteolytic conditions. The neurotoxin binding protein has been purified as a 118-kDa protein. Secondary structure content of the neurotoxin binding protein as revealed by far-UV circular dichroism spectroscopy was 19% α-helix, 50%β-sheets, 28% random coils, and 3%β-turns. This compared to 22% α-helix, 44%β-sheets, 34% random coils, and noβ-turns of the type E botulinum neurotoxin. The complex of the two proteins revealed 25%α-helix, 45%β-sheets, 27% random coils, and 3%β-turns, suggesting a significant alteration at least in theα-helical folding of the two proteins upon their interaction. Tyrosine topography is altered considerably (28%) when the neurotoxin and its binding protein are separated, indicating strong interaction between the two proteins. Gel filtration results suggested that type E neurotoxin binding protein clearly complexes with type E neurotoxin. The interaction is favored at lowpH as indicated by an initial binding rate of 8.4 min?1 atpH 5.7 compared to 4.0 min?1 atpH 7.5 as determined using a fiber optic-based biosensor. The neurotoxin and its binding protein apparently are of equivalent antigenicity, as both reacted equally on enzyme-linked immunosorbent assay to polyclonal antibodies raised against the toxoid of their complex.  相似文献   

16.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

17.
A protease that nicks the approximately 150-kilodalton (kDa) single-chain type A botulinum neurotoxin into the approximately 150-kDa di-chain form in vitro was isolated from Clostridium botulinum type A (Hall strain) cultures. The di-chain neurotoxin generated in vitro is composed of an approximately 50-kDa light chain and an approximately 100-kDa heavy chain which are disulfide linked and is indistinguishable from the di-chain neurotoxin that forms in vivo and is routinely isolated (M.L. Dekleva and B.R. DasGupta, Biochem. Biophys. Res. Commun. 162:767-772, 1989). This enzyme was purified greater than 1,000-fold by ammonium sulfate precipitation, QAE-Sephadex Q-50, Sephadex G-100, and CM-Sephadex C-50 chromatography steps with the synthetic substrate N-benzoyl-DL-arginine-p-nitroanilide. The approximately 62-kDa amidase (protease) is a complex of 15.5- and 48-kDa polypeptides (determined by polyacrylamide gel electrophoresis) that could not be separated without sodium dodecyl sulfate. The enzyme has an isoelectric point of pH 5.73, a pH optimum of 6.2 to 6.4, an absolute requirement for a thiol-reducing agent as well as a divalent metallic cation (probably Ca2+) for activity, and a temperature optimum of 70 degrees C. Tests with several synthetic substrates indicated the high specificity of the enzyme for arginyl amide bonds.  相似文献   

18.
In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na+–K+-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.  相似文献   

19.
Although multiple genotypes of Campylobacter jejuni may be isolated from the same commercial broiler flock, little is known about the infection dynamics of different genotypes within individuals or their colonization sites within the gut. Single experimental infections with C. jejuni M1 (sequence type 137, clonal complex 45) and C. jejuni 13126 (sequence type 21, clonal complex 21) revealed that 13126 colonized the ceca at significantly higher levels. The dissemination and colonization sites of the two C. jejuni strains then were examined in an experimental broiler flock. Two 33-day-old broiler chickens were infected with M1 and two with 13126, and 15 birds were left unchallenged. Cloacal swabs were taken postinfection to determine the colonization and shedding of each strain. By 2 days postinfection (dpi), 8/19 birds were shedding M1 whereas none were shedding 13126. At 8 dpi, all birds were shedding both strains. At 18 dpi, liver and cecal levels of each isolate were quantified, while in 10 birds they also were quantified at nine sites throughout the gastrointestinal (GI) tract. 13126 was found throughout the GI tract, while M1 was largely restricted to the ceca and colon. The livers of 7/19 birds were culture positive for 13126 only. These data show that 13126 has a distinctly different infection biology than strain M1. It showed slower colonization of the lower GI tract but was more invasive and able to colonize at a high level throughout the GI tract. The finding that C. jejuni strains have markedly different infection ecologies within the chicken has implications for control in the poultry industry and suggests that the contamination risk of edible tissues is dependent on the isolate involved.  相似文献   

20.
The bioemulsifier of Acinetobacter radioresistens KA53, referred to as alasan, is a high-molecular-weight complex of polysaccharide and protein. The emulsifying activity of the purified polysaccharide (apo-alasan) is very low. Three of the alasan proteins were purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had apparent molecular masses of 16, 31, and 45 kDa. Emulsification assays using the isolated alasan proteins demonstrated that the active components of the alasan complex are the proteins. The 45-kDa protein had the highest specific emulsifying activity, 11% higher than the intact alasan complex. The 16- and 31-kDa proteins gave relatively low emulsifying activities, but they were significantly higher than that of apo-alasan. The addition of the purified 16- and 31-kDa proteins to the 45-kDa protein resulted in a 1.8-fold increase in the specific emulsifying activity and increased stability of the oil-in-water emulsion. Fast-performance liquid chromatography analysis indicated that the 45-kDa protein forms a dimer in nondenaturing conditions and interacts with the 16- and 31-kDa proteins to form a high-molecular-mass complex. The 45-kDa protein and the three-protein complex had substrate specificities for emulsification and a range of pH activities similar to that of alasan. The fact that the purified proteins are active emulsifiers should simplify structure-function studies and advance our understanding of their biological roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号