首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As inexpensive and readily available fluorophores for 3′ and 5′ end labeling of RNA molecules, symmetrical BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives having a primary amino group were designed, and their facile synthetic route was established. Novel BODIPY derivatives exhibited photophysical properties comparable to commercially available BODIPY FL EDA (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylenediamine). To confirm utility of new derivatives, specific labeling of the 3′ and 5′ ends of in vitro transcribed RNAs was carried out. Furthermore, the 3′ end of the 5′ fragment of the bimolecular Tetrahymena ribozyme was labeled, and its catalytic activity was investigated.  相似文献   

2.
Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.  相似文献   

3.
We designed and synthesized new, fluorescent, non-natural amino acids that emit fluorescence of wavelengths longer than 500 nm and are accepted by an Escherichia coli cell-free translation system. We synthesized p-aminophenylalanine derivatives linked with BODIPY fluorophores at the p-amino group and introduced them into streptavidin using the four-base codon CGGG in a cell-free translation system. Practically, the incorporation efficiency was high enough for BODIPYFL, BODIPY558 and BODIPY576. Next, we incorporated BODIPYFL-aminophenylalanine and BODIPY558-aminophenylalanine into different positions of calmodulin as a donor and acceptor pair for fluorescence resonance energy transfer (FRET) using two four-base codons. Fluorescence spectra and polarization measurements revealed that substantial FRET changes upon the binding of calmodulin-binding peptide occurred for the double-labeled calmodulins containing BODIPY558 at the N terminus and BODIPYFL at the Gly40, Phe99 and Leu112 positions. These results demonstrate the usefulness of FRET based on the position-specific double incorporation of fluorescent amino acids for analyzing conformational changes of proteins.  相似文献   

4.
In vivo imaging of estrogen receptor (ER) densities in human breast cancer is a potential tool to stage disease, guide treatment protocols and follow-up on treatment outcome. Both positron emission tomography (PET) and fluorescence imaging have received ample attention to detect ligand-ER interaction. In this study we prepared BODIPY-estradiol conjugates using 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as fluorescent probe and estradiol derivatives as ligand and established their relative binding affinity (RBA) for the ERα. The synthesis of the conjugates involves attachment of a BODIPY moiety to the C17α-position of estradiol using Sonogashira or click reactions of iodo-BODIPY or aza-BODIPY with various 17α-ethynylestradiol (EE2) derivatives. The highest RBA for the ERα was observed with the EE2-BODIPY conjugate (7) featuring a linear eight carbon spacer chain. Cell uptake studies and in vivo imaging experiments in an ER-positive mouse tumor model are in progress.  相似文献   

5.
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives were prepared and their photochemical properties were characterized. One such analogue, 4,4-difluoro-4-bora-1,3,5,7-tetramethyl-8-(5-hydroxypentyl)-3a,4a-diaza-s-indacene was transformed into the corresponding phosphoramidite and incorporated into oligodeoxyribonucleotides as a fluorescent reporter group.  相似文献   

6.
Summary As a first step in the study of hormone interaction with gastrin receptor-expressing cells, three fluorescent derivatives of heptagastrin were synthesized, characterized and tested for specificity and affinity towards gastrin/CCKB receptor by means of confocal laser scanning microscopy (CLSM). Cyanine dye Cy3.29 and borfluoropyrromethene (BODIPY) derivatives of the hormone were found to be absorbed into the cells and concentrated in perinuclear organelles by a non-receptor mediated process. The BODIPY derivative turned out to be chemically unstable and was bleached by the laser beam very rapidly. Rhodamine Green-heptagastrin retained a high affinity toward the gastrin receptor (Kd=45 nm in displacement of 125I-labeled cholecystokinin-8) and showed specific binding to NIH/3T3 cells stably transfected with human gastrin/CCKB receptor cDNA, but not to nontransfected 3T3 cells. The fluorescent signal of all three dyes was sufficiently intense for localization of the compounds in cells by means of CLSM. Rhodamine Green derivative was found to be a useful tool for the study of endocytosis of the hormone. It can also be utilized for quantitative estimation of binding and determination of Kd instead of the traditionally used radiolabeled derivatives of gastrin.Abbreviations BODIPY borfluoropyrromethene - CCK cholecystokinin - CCK-8 CCK octapeptide - RG-7G Rhodamine Green heptagastrin - BSA bovine serum albumin - DMEM Dulbecco's modified Eagle's medium - TFA trifluoroacetic acid - DMSO dimethylsulfoxide - EDTA ethylenediamino tetraacetic acid - CLSM confocal laser scanning microscopy  相似文献   

7.
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole‐based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole‐based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole‐based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.  相似文献   

8.
We have examined the permissible nucleotide occupancy states of human MutSalpha. The MSH2.MSH6 heterodimer binds 1 mol of ADP and 1 mol of adenosine 5'-O-(thiotriphosphate) (ATPgammaS), with a K(d) for each nucleotide of about 1 microm. Anisotropy measurements using BODIPY TR and BODIPY FL fluorescent derivatives of ADP and 5'-adenylyl-beta,gamma-imidodiphosphate (AMPPNP) also indicate an interaction stoichiometry of 1 mol of ADP and 1 mol of triphosphate analogue per MutSalpha heterodimer. Di- and triphosphate sites can be simultaneously occupied as judged by sequential filling of the two binding site classes with differentially radiolabeled ADP and ATPgammaS and by fluorescence resonance energy transfer between BODIPY TR- and BODIPY FL-labeled ADP and AMPPNP. ATP hydrolysis by MutSalpha is accompanied by a pre-steady-state burst of ADP formation, and analysis of MutSalpha-bound nucleotide during the first turnover has demonstrated the presence of both ADP and ATP. Simultaneous presence of ADP and a nonhydrolyzable ATP analogue modulates MutSalpha.heteroduplex interaction in a manner that is distinct from that observed in the presence of ADP or nonhydrolyzable triphosphate alone, and it is unlikely that this effect is due to the presence of a mixed population of binary complexes between MutSalpha and ADP or a triphosphate analogue. These findings imply that MutSalpha has two nucleotide binding sites with differential specificities for ADP and ATP and suggest that the ADP.MutSalpha.ATP ternary complex has an important role in mismatch repair.  相似文献   

9.
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me(4)-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me(4)-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me(4)-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and approximately 506-515 nm) but also showed the absence of the 620-630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me(4)-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.  相似文献   

10.
To understand the mechanisms for endocytic sorting of lipids, we investigated the trafficking of three lipid-mimetic dialkylindocarbocyanine (DiI) derivatives, DiIC16(3) (1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), DiIC12(3) (1,1'- didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), and FAST DiI (1,1'-dilinoleyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate), in CHO cells by quantitative fluorescence microscopy. All three DiIs have the same head group, but differ in their alkyl tail length or unsaturation; these differences are expected to affect their distribution in membrane domains of varying fluidity or curvature. All three DiIs initially enter sorting endosomes containing endocytosed transferrin. DiIC16(3), with two long 16-carbon saturated tails is then delivered to late endosomes, whereas FAST DiI, with two cis double bonds in each tail, and DiIC12(3), with saturated but shorter (12-carbon) tails, are mainly found in the endocytic recycling compartment. We also find that DiOC16(3) (3,3'- dihexadecyloxacarbocyanine perchlorate) and FAST DiO (3, 3'-dilinoleyloxacarbocyanine perchlorate) behave similarly to their DiI counterparts. Furthermore, whereas a phosphatidylcholine analogue with a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore attached at the end of a 5-carbon acyl chain is delivered efficiently to the endocytic recycling compartment, a significant fraction of another derivative with BODIPY attached to a 12-carbon acyl chain entered late endosomes. Our results thus suggest that endocytic organelles can sort membrane components efficiently based on their preference for association with domains of varying characteristics.  相似文献   

11.
A novel tandem synthetic-biosynthetic procedure is described for the synthesis of four new fluorescent dinucleoside polyphosphates: mant-Ap4A, mant-AppCH2ppA, TNP-Ap4A and TNP-AppCH2ppA. These compounds are expected to supplement the existing etheno (epsilon) and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) labelled derivatives, being the fluorescent probes of choice to investigate polyphosphate/enzyme binding behaviour.  相似文献   

12.
Three BODIPY GTPgammaS analogs (FL, 515, and TR), BODIPY FL GppNHp and BODIPY FL GTP molecules were synthesized as possible fluorescent probes to study guanine nucleotide binding spectroscopically. Binding to G(alphao) increases baseline analog fluorescence by 6-, 8.5-, 2.8-, 3.5-, and 3.0-fold, respectively. Binding of GTPgammaS and GppNHp analogs to G(alphao) is of high affinity (K(D) 11, 17, 55, and 110 nM, respectively) and reaches a stable plateau while fluorescence of BODIPY FL GTP shows a transient increase which returns to baseline. Furthermore, BODIPY FL GTPgammaS shows varying affinities for alpha(o), alpha(s), alpha(i1), and alpha(i2) (6, 58, 150, and 300 nM). The affinities of BODIPY FL GppNHp for all four G(alpha) subunits are 10-fold lower than for BODIPY FL GTPgammaS. Half-times for the fluorescence increase are consistent with known GDP release rates for those proteins. Enhancement of fluorescence upon binding the G(alpha) subunit is most likely due to a rotation around the gamma-thiol (GTPgammaS) or the 3' ribose-hydroxyl (GppNHp) bond to relieve the quenching of BODIPY fluorescence by the guanine base. Binding to G(alpha) exposes the BODIPY moiety to the external environment, as seen by an increase in sodium iodide quenching. The visible excitation and emission spectra and high fluorescence levels of these probes permit robust real-time detection of nucleotide binding.  相似文献   

13.
We have prepared two fluorescent dyes derived from 8-(4-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenoxy and (o-bromo)phenoxy substituents at the 3,5-positions by a novel nucleophilic substitution reaction of the corresponding 3,5-dichloroBODIPY analogue. UV-vis absorption, steady-state and time-resolved fluorimetry have been used to investigate their solvent-dependent photophysical properties. The two BODIPY derivatives show narrow absorption and emission bands and display small Stokes shifts. The substituents at the 3,5-positions (phenoxy in 1 and o-bromophenoxy in 2) have a minor effect on the fluorescence quantum yields (0.16-0.40 for 1, 0.17-0.44 for 2) and lifetimes (1.09-2.51 ns for 1, 1.11-2.78 ns for 2). For both compounds, the fluorescence rate constant equals (1.5 +/- 0.1) x 10(8) s(-1).  相似文献   

14.
BODIPY C11 581/591 (BODIPY11) represents a sensitive probe for quantification of relative antioxidant capacity. However, the mechanism of BODIPY11 fluorescence decay in the presence of reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS) requires clarification. Azo-initiators provide a continuous source of peroxyl radicals that in simple, aerobic, homogeneous, buffered solution simulate lipid peroxyl radical formation. Inhibition of BODIPY11 fluorescence decay was assayed and quantified for several families of antioxidants, including phenols, NO donors, and thiols. Fluorescence decay of BODIPY11 in these systems demonstrated similar patterns of antioxidant activity to those observed in classical oxygen pressure measurements, and provided a readily applied quantification of antioxidant capacity and mechanistic information, which was analyzed by measurement of induction periods, initial rates, and net oxidation. LC/MS analysis confirmed that peroxyl radical-induced irreversible fluorescence decay of the BODIPY11 fluorophore is due to oxidative cleavage of the activated phenyldiene side chain. The behavior of BODIPY11 towards RNOS was more complex, even in these simple systems. Incubation of BODIPY11 with bolus peroxynitrite or a sydnonimine peroxynitrite source produced a variety of novel products, characterized by LC/MS, derived from oxidative cleavage, nitroxidation, and nitration reactions. The "NO scavenger" PTIO reinforced the antioxidant activity of NO, and inhibited BODIPY11 oxidation induced by the sydnonimine. These observations suggest that BODIPY11 is a well-behaved fluorescence probe for peroxidation and antioxidant studies, but that for study of RNOS even co-application of fluorescence decay with LC/MS measurements requires careful analysis and interpretation.  相似文献   

15.
This mini‐review focuses on fluorescent optically active crown ethers (polymeric derivatives are not included) reported in the literature (according to our knowledge), of which enantiomeric recognition ability, and in some cases, also inorganic cation complexation properties, were investigated by the sensitive and versatile fluorescence spectroscopy. These crown ether‐based chemosensors contain various fluorophore signaling units such as binaphthyl, anthracene, pyrene, tryptophan, benzimidazole, terpyridine, acridine, phenazine, acridone, BODIPY, and another conjugated aromatic one.  相似文献   

16.
We have prepared a series of bovine serum albumins (BSA) that have been site-selectively labeled at cysteine-34 with one of four different sulfhydryl-selective boron dipyrromethene difluoride (BODIPY) fluorescent probes (BODIPY FL IA, BODIPY FL C(1) IA, BODIPY 530/550 IA, and BODIPY 493/503 MB). We determine how the choice of extrinsic probe structure dictates the recovered BSA-BODIPY dynamics under thermal (10-80 degrees C) and chemical (0-5M guanidine hydrochloride) denaturation conditions. The results of these experiments show that the global protein dynamics are sensed equally by each fluorescent probe; however, the probe itself influences the local probe dynamics within the cybotactic region that surrounds cysteine-34. Thus, it seems inappropriate to think of these extrinsic fluorescent probes as passive, nonparticipatory viewers of local protein dynamics.  相似文献   

17.
Two new photosensitizers based on the BODIPY scaffold have been synthesized, of which one bears an NLS peptide, which is linked to the BODIPY’s core using the copper catalysed azide–alkyne click reaction. The phototoxicities of these BODIPY based photosensitizers have been determined, as well as their dark toxicities. Although the conjugation of a single NLS peptide to the BODIPY did not lead to any observable nuclear localization, the photosensitizer did exhibit a superior photoxicity. Cellular co-localization experiments revealed a localization of both dyes in the lysosomes, as well as a partial localization within the ER (for the peptide-bearing BODIPY).  相似文献   

18.
Using fluorescence and electronic spectroscopy the interaction of boron-dipyrromethene complex (BODIPY) with bovine serum albumin (BSA) and its bilirubin macromolecular complex (BR·BSA) in aqueous solution was investigated. The interaction of BODIPY is carried out by the static quenching of protein fluorescence and is predominantly hydrophobic and electrostatic in nature. The values of the binding constants were (61.2 ± 2.8) · 103 and (6.51 ± 0.3) · 103 M?1. The interaction of BODIPY with proteins leads to the observed hypso- and bathochromic shift in BODIPY absorption band. Forster resonance energy transfer theory allowed of determing the donor-ligand distance, which were 2.88 and 2.46 nm for BSA and BR·BSA, respectively. Using synchronous fluorescence spectroscopy it was possible to reveal features of BODIPY influence on conformational changes in protein molecules. It was established that BODIPY more effectively interacts with BSA compared to BR·BSA.  相似文献   

19.
A novel bioactive fluorescent nodulation (Nod) factor, NodRlv-IV(BODIPY FL-C16), has been synthesized by attaching a BODIPY FL-C16 acyl chain to the primary amino group of chitotetraose deacetylated at the nonreducing terminus by recombinant NodB. The binding of the fluorescent Nod factor to root systems of Vicia sativa was investigated with fluorescence spectral imaging microscopy (FSPIM) and fluorescence ratio imaging microscopy (FRIM). Spatially resolved fluorescence spectra of living and labeled Vicia sativa root systems were measured by FSPIM. Strong autofluorescence, inherent to many plant systems when excited at 488 nm, was corrected for by utilizing the difference in fluorescence emission spectra of the autofluorescence and NodRlv-IV(BODIPY FL-C16). A methodology is presented to break down the in situ fluorescence emission spectra into spatially resolved autofluorescence and BODIPY FL fluorescence spectra. Furthermore, an FRIM method was developed for correcting autofluorescence in fluorescence micrographs for this system. After autofluorescence correction it was shown that NodRlv-IV(BODIPY FL-C16) was concentrated in the root hairs, but was also bound to other parts of the root surface.  相似文献   

20.
The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug–drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand–PXR interactions. Here we report the characterization of BODIPY FL–vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL–vinblastine is a unique chemical entity different from either vinblastine or the fluorophore BODIPY FL in its function as a high-affinity human PXR ligand. We describe a BODIPY FL–vinblastine-based human PXR time-resolved fluorescence resonance energy transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL–vinblastine-based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号