首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schooling chum salmon Oncorhynchus keta were biased towards the water surface (median position <1 m) under isothermal conditions (10° C) in a water column simulator (WCS). Thermal stratification (24/10° C) inhibited upward movement with fish congregating at the thermocline and displaying a clear avoidance of potentially lethal surface waters. A tri-phase model based on piece-wise nonlinear regression was used to describe the distribution shifts of chum salmon during a change from isothermal to thermally stratified conditions. Fish distribution was consistent with thermoregulatory behaviour and exhibited 'attraction', 'preference' and 'avoidance' phases. The thermal preference of 50% of the fish lay between 12·2 and 20·2° C, however, >83·5% of the fish occupied a 'preferred' temperature range of 13·7–17·9° C. The mean temperature at which 50% of chum salmon avoided rising temperature by shifting deeper in the water column and using the cooler thermocline was 20·2° C, and 90% avoidance occurred at 22·9° C. Behavioural responses to thermal stratification were consistent amongst underyearling fish of differing size and age.  相似文献   

2.
The present paper reviews the effects of water temperature and flow on migrations, embryonic development, hatching, emergence, growth and life‐history traits in light of the ongoing climate change with emphasis on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta. The expected climate change in the Atlantic is for milder and wetter winters, with more precipitation falling as rain and less as snow, decrease in ice‐covered periods and frequent periods with extreme weather. Overall, thermal limits for salmonids are species specific. Scope for activity and growth and optimal temperature for growth increase with temperature to an optimal point before constrain by the oxygen content of the water. The optimal temperature for growth decreases with increasing fish size and varies little among populations within species, whereas the growth efficiency may be locally adapted to the temperature conditions of the home stream during the growth season. Indirectly, temperature influences age and size at smolting through its effect on growth. Time of spawning, egg hatching and emergence of the larvae vary with temperature and selective effects on time of first feeding. Traits such as age at first maturity, longevity and fecundity decrease with increasing temperature whilst egg size increases with temperature. Water flow influences the accessibility of rivers for returning adults and speed of both upstream and downstream migration. Extremes in water flow and temperature can decrease recruitment and survival. There is reason to expect a northward movement of the thermal niche of anadromous salmonids with decreased production and population extinction in the southern part of the distribution areas, migrations earlier in the season, later spawning, younger age at smolting and sexual maturity and increased disease susceptibility and mortality. Future research challenges are summarized at the end of the paper.  相似文献   

3.
1. A growth model, originally developed for brown trout (Salmo trutta), has now been fitted to data for Atlantic salmon (S. salar) and stone‐loach (Barbatula barbatula) from English populations, and Arctic charr (Salvelinus alpinus) from Sweden. The model relates growth rate to temperature for a fish of standard size and the functional relationship has a triangular shape with a sharp peak at the optimal temperature for growth and zero growth at the base of the triangle. It was unsuitable for growth data for Norwegian salmon, and a curvilinear Ratkowsky model provided a better fit, though the experimental protocol was different in the Norwegian and English experiments. 2. The Norwegian salmon were kept in groups in each tank, had to compete for food, and had to be divided into slow, moderate and fast growers before the Ratkowsky model could be fitted. Each English salmon was kept in its own tank and fed individually. For replicate experiments, fish of similar size were selected. Variation among fish kept under similar conditions was therefore small, and the triangular model was essentially for individual fish, not groups of fish. 3. The present simulation study tests the hypothesis that individual differences in the growth response could account for the curvilinear growth‐temperature relationship for the Norwegian salmon. The triangular model was used to generate the growth response to temperature for a group of salmon, each fish having a slightly different temperature preference and growth rate. The result was a curvilinear response, well approximated by the Ratkowsky model (adjusted R2 = 0.96). When the variability in individual temperature preference was increased, the Ratkowsky model was an even better fit (adjusted R2 = 0.98). Therefore, the apparent discrepancy between the two models was reconciled by allowing for individual differences in temperature preference and growth rate within groups of fish.  相似文献   

4.
Age‐related thermal habitat use by sockeye Oncorhynchus nerka, chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon was examined using trawl data obtained in spring in the North Pacific Ocean. Thermal habitat use differed by species and age. Larger and older fishes inhabited cooler areas, whereas smaller and younger fishes inhabited warmer areas.  相似文献   

5.
The present study determined the effect of body mass and acclimation temperature (15–28°C) on oxygen consumption rate (ṀO2) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75–0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR−1) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures.  相似文献   

6.
Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmon Oncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.  相似文献   

7.
1. The chief objectives were to analyse and model experimental data for maximum growth and food consumption of Atlantic salmon parr (Salmo salar) collected from a cold glacier fed river in western Norway. The growth and feeding models were also applied to groups of Atlantic salmon growing and feeding at rates below the maximum. The growth models were validated by comparing their predictions with observed growth in the river supplying the experimental fish.
2. Two different models were fitted, one originally developed for British salmon and the other based on a model for bacterial growth. Both gave estimates for optimum temperature for growth at 18–19 °C, somewhat higher than for Atlantic salmon from Britain. Higher optimal temperature for growth in salmon from a cold Norwegian river than from British rivers does not concur with predictions from the thermal adaptation hypothesis.
3. Model parameter estimates differed among growth groups in that the lower critical temperature for growth increased from fast to slow growing individuals. In contrast to findings for brown trout (Salmo trutta), the optimum temperature for growth did not decrease with decreasing levels of food consumption.
4. A new and simple model showed that food consumption (expressed in energy terms) peaked at 19.5–19.8 °C, which is similar to the optimal temperature for growth. Feeding began at a temperature 1.5 °C below the lower temperature for growth and ended about 1 °C above the maximum temperature for growth. Model parameter estimates for consumption differed among growth groups in a manner similar to the growth models. Maximum consumption was lower for Atlantic salmon than for brown trout, except at temperatures above 18 °C.
5. By combining the growth and food consumption models, growth efficiency was estimated and reached a maximum at about 14 °C for fast growing individuals, increasing to nearly 17 °C for slow growing ones, although it was lower overall for the latter group. Efficiency also declined with increasing fish size. Growth efficiency was generally higher for Atlantic salmon than for brown trout, particularly at high temperature.  相似文献   

8.
Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.  相似文献   

9.
Synopsis Stomach contents of juvenile coho,Oncorhynchus kisutch, and chinook,O. tshawytscha, salmon collected in purse seines off the coast of Washington and Oregon were examined for variations related to predator size. There was a general trend toward increasing consumption of fish with increasing body size, due mainly to the increase in northern anchovy biomass consumed by the larger salmon. Most of the major prey taxa showed significant differences among the size classes examined for both salmon species. There was a direct relationship between predator and prey size for both coho and chinook, but considerable variation was found in prey length consumed within each size class. Prey width did not provide as good a fit as prey length for either species. In general, coho consumed larger fish prey in relation to their body length than chinook but there were substantial differences by month or year of collection.  相似文献   

10.
Sibling male Atlantic salmon parr that matured tended to be the larger fish in January, but their monthly specific growth rates between January and July did not differ from those of non-maturing fish. Maturing fish had lower condition factors in March, but greater increases in condition factor during April, exceeding those of non-maturing males by May. In maturing males, feeding rates between July and September, and specific growth rates in August and September, were lower than those of immature fish. Consequently, the mean size of immatures equalled or exceeded that of maturing males by October. Maturation rates were strongly correlated with increases in mean condition factor only during April.  相似文献   

11.
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2–3 °C above long‐term annual means can compromise critical physiological processes. We examined the capacity of a model species – a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end‐of‐century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long‐term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.  相似文献   

12.
Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow’s Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.  相似文献   

13.
Ontogeny, diet shifts, and nutrient stoichiometry in fish   总被引:1,自引:0,他引:1  
Alberto Pilati  Michael J. Vanni 《Oikos》2007,116(10):1663-1674
Most stoichiometric models do not consider the importance of ontogenetic changes in body nutrient composition and excretion rates. We quantified ontogenetic variation in stoichiometry and diet in gizzard shad, Dorosoma cepedianum , an omnivorous fish with a pronounced ontogenetic diet shift; and zebrafish, Danio rerio, grown in the lab with a constant diet. In both species, body stoichiometry varied considerably along the life cycle. Larval gizzard shad and zebrafish had higher molar C:P and N:P ratios than larger fish. Variation in body nutrient ratios was driven mainly by body P, which increased with size. Gizzard shad body calcium content was highly correlated with P content, indicating that ontogenetic P variation is associated with bone formation. Similar trends in body stoichiometry of zebrafish, grown under constant diet in the laboratory, suggest that ontogeny (e.g. bone formation) and not diet shift is the main factor affecting fish body stoichiometry in larval and juvenile stages. The N:P ratio of nutrient excretion also varied ontogenetically in gizzard shad, but the decline from larvae to juveniles appears to be largely associated with variation in the N:P of alternative food resources (zooplankton vs detritus) rather than by fish body N:P. Furthermore, the N:P ratio of larval gizzard shad excretion appears to be driven more by the N:P ratio at which individuals allocate nutrients to growth, more so than static body N:P, further illustrating the need to consider ontogenetic variation. Our results thus show that fish exhibit considerable ontogenetic variation in body stoichiometry, driven by an inherent increase in the relative allocation of P to bones, whereas ontogenetic variation in excretion N:P ratio of gizzard shad is driven more by variation in food N:P than by body N:P.  相似文献   

14.
15.
As water temperature is projected to increase in the next decades and its rise is clearly identified as a threat for cold water fish species, it is necessary to adapt and optimize the tools allowing to assess the quantity and quality of habitats with the inclusion of temperature. In this paper, a fuzzy logic habitat model was improved by adding water temperature as a key determinant of juvenile Atlantic salmon parr habitat quality. First, salmon experts were consulted to gather their knowledge of salmon parr habitat, then the model was validated with juvenile salmon electrofishing data collected on the Sainte-Marguerite, Matapedia and Petite-Cascapedia rivers (Québec, Canada). The model indicates that when thermal contrasts exist at a site, cooler temperature offered better quality of habitat. Our field data show that when offered the choice, salmon parr significantly preferred to avoid both cold areas (<15 °C) and warm areas (>20.5 °C). Because such thermal contrasts were not consistently present among the sites sampled, the model was only validated for less than 60% of the sites. The results nevertheless indicate a significant correlation between median Habitat Quality Index and parr density for the Sainte-Marguerite River (R2 = 0.38). A less important, albeit significant (F-test; p = 0.036) relationship was observed for the Petite-Cascapedia river (R2 = 0.14). In all instances, the four-variable (depth, velocity, substrate size and temperature) model provided a better explanation of parr density than a similar model excluding water temperature.  相似文献   

16.
Temperature-sensitive radio transmitters were employed to study the patterns of behavioural thermoregulation, habitat preference and movement of 19 adult spring chinook salmon, Oncurhynchus tshawytscha (Walbaum), in the Yakima River. During the 4 months prior to spawning, fish maintained an average internal temperature 2.5°C below ambient river temperature. This represented a 12 to 20% decrease in basal metabolic demand or a saving of 17.3 to 29.9 calkg−1 h−1. Fish were most commonly associated with islands, pools, and rock out-croppings along stream banks. Homing behaviour appeared to be modified to optimize temperature regimes and energy conservation. As the time of spawning approached, fish left thermal refuges and migrated to spawning grounds upstream and downstream of refuge areas. Although spring chinook salmon residing within cool-water refuges may be capable of mitigating sub-lethal temperature effects, cool-water areas need to be abundant and available to the fish. The availability of suitable thermal refuges and appropriate holding habitat within mainstem rivers may affect long-term population survival.  相似文献   

17.
Survival of age-0 walleye pollock Theragra chalcogramma in the absence of food followed simple bioenergetic models, with large body size, high initial condition, and cold temperatures all increasing survival rates. High survival after >200 days at cold temperatures (<3·0° C) indicated extended tolerance of extreme cold, as long as sufficient body size and condition are attained during the summer growth period. Analysis of body constituents demonstrated a substantial increase in tissue water and depletion of lipid during starvation. Survivors had significantly higher lipid stores than mortalities, and larger fish had higher levels of lipid than smaller fish among experimental survivors, laboratory fish that were never starved, and wild fish. Fish returned to warm temperatures and high rations following 205 days of food deprivation displayed nearly complete recovery, with rapid increases in length, weight, and condition and minimal mortality (6·8%) during the subsequent 3 months. Age-0 walleye pollock collected in September in the Bering Sea were substantially smaller and generally had lower lipid levels than fish used in laboratory starvation experiments, suggesting they are susceptible to size- and condition-dependent mortality during the winter. The results are interpreted with respect to field distributions of age-0 walleye pollock, overwinter survival, and synergistic effects of food and temperature under varying models of climate change.  相似文献   

18.
The hypothesis is tested that birds in hotter and drier environments may have larger bills to increase the surface area for heat dissipation. California provides a climatic gradient to test the influence of climate on bill size. Much of California experiences dry warm/hot summers and coastal areas experience cooler summers than interior localities. Based on measurements from 1488 museum skins, song sparrows showed increasing body‐size‐corrected bill surface area from the coast to the interior and declining in the far eastern desert. As predicted by Newton's convective heat transfer equation, relative bill size increased monotonically with temperature, and then decreased where average high temperatures exceed body temperature. Of the variables considered, distance from coast, average high summer temperature, and potential evapotranspiration showed a strong quadratic association with bill size and rainfall had a weaker negative relationship. Song sparrows on larger, warmer islands also had larger bills. A subsample of radiographed specimens showed that skeletal bill size is also correlated with temperature, demonstrating that bill size differences are not a result of variation in growth and wear of keratin. Combined with recent thermographic studies of heat loss in song sparrow bills, these results support the hypothesis that bill size in California song sparrows is selected for heat dissipation.  相似文献   

19.
The relationship between physiology and temperature has a large influence on population-level responses to climate change. In natural settings, direct thermal effects on metabolism may be exaggerated or offset by behavioural responses influencing individual energy balance. Drawing on a newly developed proxy, we provide the first estimates of the thermal performance curve of field metabolism in a wild fish. We investigate the thermal sensitivity of field metabolic rate in two sympatric, genetically distinct ecotypes of Atlantic cod from the Skagerrak coast of southern Norway. The combined ecotype median of field metabolic rate increased with increasing temperature until around 16°C, coincident with the thermal optimum for growth for juvenile Atlantic cod. Individual cod experienced temperatures in excess of the thermal optimum for field metabolic rate, indicating some degree of thermal limitation of field metabolism in a complex natural environment with the potential for thermal refugia. The two cod ecotypes showed different thermal performance curves for field metabolic rate, revealing that genetic components to temperature sensitivity persist beyond acclimation effects. The cold-adapted fjord ecotype maintained higher field metabolic rates at cooler temperatures than the warm-adapted North Sea ecotype, which showed clear preference for warmer waters around the thermal optimum. Field metabolic rates of the two ecotypes were strongly influenced by year and location of sampling, implying more complex behavioural responses to environmental conditions. We emphasise that the energy uses reflecting physiological conditions in the field should be considered in the evaluation of the effect of climatic variables on fish population dynamics and demonstrate that otolith isotopes provide an analytical framework to answer this question.  相似文献   

20.
Competition between masu salmon (Oncorhynchus masou) of wild and aquaculture origin was investigated. Fry were individually marked and released in stream enclosures with and without a piscivorous predator. The aim was to assess the effects of predators and salmon body size on survival and growth of the two types of fish under natural conditions. The presence of predaceous Japanese huchen (Hucho perryi) resulted in lower mean growth rates of surviving fry. Relatively large fish survived and grew better than relatively small fish in the absence of predators, but not in their presence. This probably indicates an indirect effect of predation risk on within-cohort competitive behavior among salmon juveniles, with larger fish forced to give up their position as superior competitors. Domesticated fish survived in larger numbers and grew much faster than wild fish, irrespective of predator presence. Comparison with similar field studies revealed a pattern that the pre-experimental environment influenced the outcome of competition between wild and domesticated juvenile salmon. Domesticated fish were superior competitors even in the absence of an initial size advantage, which commonly gives a further advantage to hatchery-raised fish in natural streams. Therefore, caution dictates to avoid the release or escape of such fish into the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号