首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inferring biotic interactions from the examination of patterns of species occurrences has been a central tenet in community ecology, and it has recently gained interest in the context of single-species distribution modelling. However, understanding of how spatial extent and grain size affect such inferences remains elusive. For example, would inferences of biotic interactions from broad-scale patterns of coexistence provide a surrogate for patterns at finer spatial scales? In this paper we examine how the spatial and environmental association between two closely related species of freshwater turtles in the Iberian Peninsula is affected by the geographical extent and resolution of the analysis. Species coexistence was compared across spatial scales using five datasets at varying spatial extents and resolutions. Both similarities in the two species’ use of space and in their responses to environmental variables were explored by means of regression analyses. We show that a positive association between the two species measured at broader scales can switch to a negative association at finer scales. We demonstrate that without examination of the effects of spatial scale when investigating biotic interactions using co-occurrence patterns observed at coarse resolutions, conclusions can be deeply misleading.  相似文献   

2.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

3.
Understanding the determinants of species’ distributions and abundances is a central theme in ecology. The development of statistical models to achieve this has a long history and the notion that the model should closely reflect underlying scientific understanding has encouraged ecologists to adopt complex statistical methods as they arise. In this paper we describe a Bayesian hierarchical model that reflects a conceptual ecological model of multi‐scaled environmental determinants of riverine fish species’ distributions and abundances. We illustrate this with distribution and abundance data of a small‐bodied fish species, the Empire gudgeon Hypseleotris galii, in the Mary and Albert Rivers, Queensland, Australia. Specifically, the model sought to address; 1) the extent that landscape‐scale abiotic variables can explain the species’ distribution compared to local‐scale variables, 2) how local‐scale abiotic variables can explain species’ abundances, and 3) how are these local‐scale relationships mediated by landscape‐scale variables. Overall, the model accounted for around 60% of variation in the distribution and abundance of H. galii. The findings show that the landscape‐scale variables explain much of the distribution of the species; however, there was considerable improvement in estimating the species’ distribution with the addition of local‐scale variables. There were many strong relationships between abundance and local‐scale abiotic variables; however, several of these relationships were mediated by some of the landscape‐scale variables. The extent of spatial autocorrelation in the data was relatively low compared to the distances among sampling reaches. Our findings exemplify that Bayesian statistical modelling provides a robust framework for statistical modelling that reflects our ecological understanding. This allows ecologists to address a range of ecological questions with a single unified probability model rather than a series of disconnected analyses.  相似文献   

4.
Slater H  Michael E 《PloS one》2012,7(2):e32202
Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.  相似文献   

5.
Cang Hui  Melodie A. McGeoch 《Oikos》2007,116(12):2097-2107
Species distributions are commonly measured as the number of sites, or geographic grid cells occupied. These data may then be used to model species distributions and to examine patterns in both intraspecific and interspecific distributions. Harte et al. (1999) used a model based on a bisection rule and assuming self-similarity in species distributions to do so. However, this approach has also been criticized for several reasons. Here we show that the self-similarity in species distributions breaks down according to a power relationship with spatial scales, and we therefore adopt a power-scaling assumption for modeling species occupancy distributions. The outcomes of models based on these two assumptions (self-similar and power-scaling) have not previously been compared. Based on Harte's bisection method and an occupancy probability transition model under these two assumptions (self-similar and power-scaling), we compared the scaling pattern of occupancy (also known as the area-of-occupancy) and the spatial distribution of species. The two assumptions of species distribution lead to a relatively similar interspecific occupancy frequency distribution pattern, although the spatial distribution of individual species and the scaling pattern of occupancy differ significantly. The bimodality in occupancy frequency distributions that is common in species communities, is confirmed to a result for certain mathematical and statistical properties of the probability distribution of occupancy. The results thus demonstrate that the use of the bisection method in combination with a power-scaling assumption is more appropriate for modeling species distributions than the use of a self-similarity assumption, particularly at fine scales.  相似文献   

6.
Abstract. Plant species distributions are generally thought to be chiefly under environmental control, although they may be affected by disturbance events or dispersion properties of the species. The relative importance of these different factors is not easy to evaluate because they often share common spatial patterns, such that an inextricable network of relationships occurs between plant distributions, environmental conditions, disturbance events and endogenous factors such as propagule dispersion. In this paper we propose a method for untangling the common spatial component from the relationship between environmental conditions and the distribution of tree species. Using partial Mantel tests and path analysis, we test models of relationships between these data sets. Results show that in our study area, spatial patterns of species associated with hydric conditions remain largely correlated with environmental conditions. However, mesic sites show more complex forest covers, in which a significant spatial component persists when environmental variation is statistically controlled for. This remaining spatial variability suggests that other factors possessing spatial structure partly explain species distributions.  相似文献   

7.
Aim Understanding the spatial patterns of species distribution and predicting the occurrence of high biological diversity and rare species are central themes in biogeography and environmental conservation. The aim of this study was to model and scrutinize the relative contributions of climate, topography, geology and land‐cover factors to the distributions of threatened vascular plant species in taiga landscapes in northern Finland. Location North‐east Finland, northern Europe. Methods The study was performed using a data set of 28 plant species and environmental variables at a 25‐ha resolution. Four different stepwise selection algorithms [Akaike information criterion (AIC), Bayesian information criterion (BIC), adaptive backfitting, cross selection] with generalized additive models (GAMs) were fitted to identify the main environmental correlates for species occurrences. The accuracies of the distribution models were evaluated using fourfold cross‐validation based on the area under the curve (AUC) derived from receiver operating characteristic plots. The GAMs were tentatively extrapolated to the whole study area and species occurrence probability maps were produced using GIS techniques. The effect of spatial autocorrelation on the modelling results was also tested by including autocovariate terms in the GAMs. Results According to the AUC values, the model performance varied from fair to excellent. The AIC algorithm provided the highest mean performance (mean AUC = 0.889), whereas the lowest mean AUC (0.851) was obtained from BIC. Most of the variation in the distribution of threatened plant species was related to growing degree days, temperature of the coldest month, water balance, cover of mire and mean elevation. In general, climate was the most powerful explanatory variable group, followed by land cover, topography and geology. Inclusion of the autocovariate only slightly improved the performance of the models and had a minor effect on the importance of the environmental variables. Main conclusions The results confirm that the landscape‐scale distribution patterns of plant species can be modelled well on the basis of environmental parameters. A spatial grid system with several environmental variables derived from remote sensing and GIS data was found to produce useful data sets, which can be employed when predicting species distribution patterns over extensive areas. Landscape‐scale maps showing the predicted occurrences of individual or multiple threatened plant species may provide a useful basis for focusing field surveys and allocating conservation efforts.  相似文献   

8.
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent.  相似文献   

9.
10.
In order to examine the spatial distribution of forest resources on local territories and to understand the factors controlling such distributions, we studied the spatial patterns of a group of 23 useful plant species on the territory of a Kuna community in the province of Darien, Panama. A stratified random sampling scheme was used to survey the distribution and abundance of the species across a 3500 ha area around the village. Data on the physical environment as well as the geographic coordinates of the sample plots were also obtained. A series of canonical analyses was conducted to evaluate the species–environment relationships and to identify spatial structures in the species distributions left unexplained by the environmental variables. Four distinct distribution patterns were identified among the species; these were most strongly explained by land-use, the degree of canopy closure and topography. Significant spatial structures, independent of the measured environmental variables, were related to anthropogenic pressure and an edaphic gradient, and the habitat associations of the individual species were described. The results obtained from this case study suggest that land-use dynamics may play a predominant role in structuring inhabited landscapes, and that diversity in distribution patterns and habitat associations will require a combination of spatially explicit management strategies to ensure the local resource base.  相似文献   

11.
1. Understanding the relationships between flow regime and the distribution of biota is critical for managing flows in regulated rivers. In northern Victoria, Australia, efforts are presently underway to restore a natural, intermittent flow regime to several streams which, for over 100 years, have received perennial diversions as part of a stock, irrigation and domestic water supply. 2. Bayesian, model‐averaged, binomial regression was used to predict probabilities of occurrence for 13 fish species, including five non‐native species, based on hydrologic variables characterising both the current and modelled future flow regimes at 10 sites representing a range of hydrologic regimes (categorised here as heavily regulated, moderately regulated and unregulated). 3. Regression models accurately predicted present probabilities of occurrence for most species across all sites. The models predicted a reduced likelihood of large, native, flow‐dependent species occurring at regulated sites following flow restoration. Predictions regarding the future distribution of widespread species including two small‐bodied native and four exotic species were less certain as current distributions of these widespread species were unrelated to hydrologic variables we examined and thus unlikely to be significantly affected by flow restoration. The distributions of two small native species currently restricted to unregulated sites are predicted to increase throughout the system. 4. This study illustrates the effects of artificially induced perennial flow on lowland fish distributions. Furthermore, the combination of pre‐restoration data together with predictive modelling provides valuable insights into the likely outcomes of flow regime shifts. 5. This study clearly demonstrates the value of combining empirical research and modelling in guiding environmental flow and ecosystem restoration decisions. Knowledge from the study is now helping guide management decisions and the development of mitigation strategies to protect highly valued species in the system from potential future threats.  相似文献   

12.
Biological processes and physical oceanography are often integrated in numerical modelling of marine fish larvae, but rarely in statistical analyses of spatio-temporal observation data. Here, we examine the relative contribution of inter-annual variability in spawner distribution, advection by ocean currents, hydrography and climate in modifying observed distribution patterns of cod larvae in the Lofoten-Barents Sea. By integrating predictions from a particle-tracking model into a spatially explicit statistical analysis, the effects of advection and the timing and locations of spawning are accounted for. The analysis also includes other environmental factors: temperature, salinity, a convergence index and a climate threshold determined by the North Atlantic Oscillation (NAO). We found that the spatial pattern of larvae changed over the two climate periods, being more upstream in low NAO years. We also demonstrate that spawning distribution and ocean circulation are the main factors shaping this distribution, while temperature effects are different between climate periods, probably due to a different spatial overlap of the fish larvae and their prey, and the consequent effect on the spatial pattern of larval survival. Our new methodological approach combines numerical and statistical modelling to draw robust inferences from observed distributions and will be of general interest for studies of many marine fish species.  相似文献   

13.
Different numerical techniques were used to detect and describe the major ecological-biogeographical patterns of vascular plant distributions at the meso-scale level in a subarctic region in Finland. The distribution patterns of 231 native taxa in 362 1 km2 grid squares of the Kevo Nature Reserve were analysed by two-way indicator species analysis and detrended correspondence analysis, and were subsequently related to twenty-eight geographical, topographical, geological, and vegetational variables using simple discriminant functions and canonical correspondence analysis with associated Monte Carlo permutation tests.
The floristic variation detected reflects variations in environmental factors operative at the regional and local scales. No major broad-scale coherent geographical patterns were detected; instead, the spatial distribution of the grids with a similar floristic composition shows a scattered distribution. All the numerical techniques reveal a major gradient from alpine areas to lowland sites with rivers and rocky outcrops, and the most important explanatory variables for predicting the main floristic variation are all associated with altitude. The floristic patterns represented by the second ordination gradient mainly correlate with the abundance of mires. Partial ordinations indicate that both the geographical and geological variables explain relatively little of the species distributional patterns.
Although the meso-scale approach reveals much about the plant-environment relationships in the study area, the floristic variation appears to be determined mainly by fine-scale factors. In the most heterogeneous grids, the grid size used fails to detect accurately the ecological patterns of the species present.  相似文献   

14.
物种的空间分布会受到种间相互作用(如捕食关系等)和环境变量等多种因素共同影响。阐明环境变量和种间相互作用对同域物种空间分布关系的影响, 对于理解群落聚集和生物多样性的维持机制至关重要。为了解川西高原常见雉类与捕食者的空间分布关系及其驱动因素, 本研究利用2016-2018年在川西高原84个红外相机位点获得的682张目标物种的独立照片, 采用条件型双物种占域模型(conditional two-species occupancy model)在相机位点尺度评估了在川西高原广泛分布的黄喉雉鹑(Tetraophasis szechenyii)、血雉(Ithaginis cruentus)和白马鸡(Crossoptilon crossoptilon)与其捕食者赤狐(Vulpes vulpes)的空间分布关系。结果显示: (1)在物种作用和环境变量的共同影响下, 赤狐和血雉(物种相互作用因子, species interaction factor, SIF = 1.31 ± 0.14)与赤狐和黄喉雉鹑(SIF = 1.42 ± 0.41)在研究区域内的空间分布趋于重合, 赤狐和血雉的空间关系随距河流距离的增加呈现先重合后趋于分离的趋势, 而赤狐和黄喉雉鹑的空间关系随距河流距离的增加呈现出由重合转为分离的趋势。赤狐与白马鸡在空间分布上相互独立(SIF = 1), 白马鸡的空间分布主要受环境因子影响, 而赤狐对其没有影响。(2) 3种雉类的探测率受物种作用的影响, 在相机位点尺度上赤狐的存在减少了3种雉类的探测率(pB > rB)。本研究为物种空间分布关系的研究提供了新的案例, 也为理解物种共存机制和生物多样性保护提供了科学依据。  相似文献   

15.
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.  相似文献   

16.
Aim To investigate the application of environmental modelling to reconstructive mapping of pre‐impact vegetation using historical survey records and remnant vegetation data. Location The higher elevation regions of the Fleurieu Peninsula region in South Australia were selected as a case study. The Fleurieu Peninsula is an area typical of many agricultural regions in temperate Australia that have undergone massive environmental transformation since European settlement. Around 9% of the present land cover is remnant vegetation and historical survey records from the ad 1880s exist. It is a region with strong gradients in climate and topography. Methods Records of pre‐impact vegetation distribution made in surveyors’ field notebooks were transcribed into a geographical information system and the spatial and classificatory accuracy of these records was assessed. Maps of remnant vegetation distribution were obtained. Analysis was undertaken to quantify the environmental domains of historical survey record and remnant vegetation data to selected meso‐scaled climatic parameters and topo‐scaled terrain‐related indices at a 20 m resolution. An exploratory analytical procedure was used to quantify the probability of occurrence of vegetation types in environmental domains. Probability models spatially extended to geographical space produce maps of the probability of occurrence of vegetation types. Individual probability maps were combined to produce a pre‐impact vegetation map of the region. Results Surveyors’ field notebook records provide reliable information that is accurately locatable to levels of resolution such that the vegetation data can be spatially correlated with environmental variables generated on 20 m resolution environmental data sets. Historical survey records of vegetation were weakly correlated with the topo‐scaled environmental variables but were correlated with meso‐scaled climate. Remnant vegetation records similarly not only correlated to climate but also displayed stronger relationships with the topo‐scaled environmental variables, particularly slope. Main conclusions A major conclusion of this study is that multiple sources of evidence are required to reconstruct past vegetation patterns in heavily transformed region. Neither the remnant vegetation data nor historical survey records provided adequate data sets on their own to reconstruct the pre‐impact vegetation of the Fleurieu Peninsula. Multiple sources of evidence provide the only means of assessing the environmental and historical representativeness of data sets. The spatial distribution of historical survey records was more environmentally representative than remnant vegetation data, which reflect biases due to land clearance. Historical survey records were also shown to be classificatory and spatially accurate, thus are suitable for quantitative spatial analyses. Analysis of different spatial vegetation data sets in an environmental modelling framework provided a rigorous means of assessing and comparing respective data sets as well as mapping their predicted distributions based on quantitative correlations. The method could be usefully applied to other regions where predictions of pre‐impact vegetation cover are required.  相似文献   

17.
There have been several attempts to build a unified framework for macroecological patterns. However, these have mostly been based either on questionable assumptions or have had to be parameterized to obtain realistic predictions. Here, we propose a new model explicitly considering patterns of aggregated species distributions on multiple spatial scales, the property which lies behind all spatial macroecological patterns, using the idea we term 'generalized fractals'. Species' spatial distributions were modelled by a random hierarchical process in which the original 'habitat' patches were randomly replaced by sets of smaller patches nested within them, and the statistical properties of modelled species assemblages were compared with macroecological patterns in observed bird data. Without parameterization based on observed patterns, this simple model predicts realistic patterns of species abundance, distribution and diversity, including fractal-like spatial distributions, the frequency distribution of species occupancies/abundances and the species–area relationship. Although observed macroecological patterns may differ in some quantitative properties, our concept of random hierarchical aggregation can be considered as an appropriate null model of fundamental macroecological patterns which can potentially be modified to accommodate ecologically important variables.  相似文献   

18.
Aim Analyses of species distributions are complicated by various origins of spatial autocorrelation (SAC) in biogeographical data. SAC may be particularly important for invasive species distribution models (iSDMs) because biological invasions are strongly influenced by dispersal and colonization processes that typically create highly structured distribution patterns. We examined the efficacy of using a multi‐scale framework to account for different origins of SAC, and compared non‐spatial models with models that accounted for SAC at multiple levels. Location We modelled the spatial distribution of an invasive forest pathogen, Phytophthora ramorum, in western USA. Methods We applied one conventional statistical method (generalized linear model, GLM) and one nonparametric technique (maximum entropy, Maxent) to a large dataset on P. ramorum occurrence (n = 3787) to develop four types of model that included environmental variables and that either ignored spatial context or incorporated it at a broad scale using trend surface analysis, a local scale using autocovariates, or multiple scales using spatial eigenvector mapping. We evaluated model accuracies and amounts of explained spatial structure, and examined the changes in predictive power of the environmental and spatial variables. Results Accounting for different scales of SAC significantly enhanced the predictive capability of iSDMs. Dramatic improvements were observed when fine‐scale SAC was included, suggesting that local range‐confining processes are important in P. ramorum spread. The importance of environmental variables was relatively consistent across all models, but the explanatory power decreased in spatial models for factors with strong spatial structure. While accounting for SAC reduced the amount of residual autocorrelation for GLM but not for Maxent, it still improved the performance of both approaches, supporting our hypothesis that dispersal and colonization processes are important factors to consider in distribution models of biological invasions. Main conclusions Spatial autocorrelation has become a paradigm in biogeography and ecological modelling. In addition to avoiding the violation of statistical assumptions, accounting for spatial patterns at multiple scales can enhance our understanding of dynamic processes that explain ecological mechanisms of invasion and improve the predictive performance of static iSDMs.  相似文献   

19.

Aim

Understanding the distribution of marine organisms is essential for effective management of highly mobile marine predators that face a variety of anthropogenic threats. Recent work has largely focused on modelling the distribution and abundance of marine mammals in relation to a suite of environmental variables. However, biotic interactions can largely drive distributions of these predators. We aim to identify how biotic and abiotic variables influence the distribution and abundance of a particular marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling approaches and conducting an extensive literature review.

Location

Western North Atlantic continental shelf.

Methods

We combined widespread marine mammal and fish and invertebrate surveys in an ensemble modelling approach to assess the relative importance and capacity of the environment and other marine species to predict the distribution of both coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled results with a systematic literature review on the prey of dolphins throughout the region to help explain patterns driven by prey availability, as well as reveal new ones that may not necessarily be a predator–prey relationship.

Results

We find that coastal bottlenose dolphin distributions are associated with one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve when using only fish versus only environmental variables. The literature review suggests that this tight coupling is likely a predator–prey relationship. Comparatively, offshore dolphin distributions are more strongly related to environmental variables, and predictions are better for environmental-only models. As revealed by the literature review, this may be due to a mismatch between the animals caught in the fish and invertebrate surveys and the predominant prey of offshore dolphins, notably squid.

Main Conclusions

Incorporating prey species into distribution models, especially for coastal bottlenose dolphins, can help inform ecological relationships and predict marine predator distributions.  相似文献   

20.
1. Evaluating the distribution of species richness where biodiversity is high but has been insufficiently sampled is not an easy task. Species distribution modelling has become a useful approach for predicting their ranges, based on the relationships between species records and environmental variables. Overlapping predictions of individual distributions could be a useful strategy for obtaining estimates of species richness and composition in a region, but these estimates should be evaluated using a proper validation process, which compares the predicted richness values and composition with accurate data from independent sources. 2. In this study, we propose a simple approach to estimate model performance for several distributional predictions generated simultaneously. This approach is particularly suitable when species distribution modelling techniques that require only presence data are used. 3. The individual distributions for the 370 known amphibian species of Mexico were predicted using maxent to model data on their known presence (66,113 presence-only records). Distributions were subsequently overlapped to obtain a prediction of species richness. Accuracy was assessed by comparing the overall species richness values predicted for the region with observed and predicted values from 118 well-surveyed sites, each with an area of c. 100 km(2), which were identified using species accumulation curves and nonparametric estimators. 4. The derived models revealed a remarkable heterogeneity of species richness across the country, provided information about species composition per site and allowed us to obtain a measure of the spatial distribution of prediction errors. Examining the magnitude and location of model inaccuracies, as well as separately assessing errors of both commission and omission, highlights the inaccuracy of the predictions of species distribution models and the need to provide measures of uncertainty along with the model results. 5. The combination of a species distribution modelling method like maxent and species richness estimators offers a useful tool for identifying when the overall pattern provided by all model predictions might be representing the geographical patterns of species richness and composition, regardless of the particular quality or accuracy of the predictions for each individual species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号