首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many proteins have been shown to participate in ligand‐stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr‐phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant‐negative mutants to inhibit endocytosis of EGFR. RNAi‐mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C‐terminal tail of Tom1L1 contains a novel clathrin‐interacting motif responsible for interaction with the C‐terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked‐down cells. These results suggest that EGF triggers a transient Grb2/Shc‐mediated association of EGFR with Tyr‐phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand–receptor complex.  相似文献   

2.
Tom1L1(Tom1 like 1)参与并调节细胞信号转导及受体运输通路。在不同细胞中Tom1L1对信号转导具有不同的调节作用。Tom1L1-CHC(clathrinheavychain)复合物减少Src蛋白在小窝(caveolae)处富集,从而阻碍Src蛋白与血小板衍生因子(platelet derived growth factor,PDGF)受体的结合。抑制PDGF受体介导的有丝分裂和转化信号传导。活化的表皮生长因子受体(epidermal growth factor receptor,EGFR)通过Src家族蛋白激酶(src family kinase,SFK)磷酸化T0m1L1,磷酸化的Tom1L1通过Grb2和Shc的桥梁作用与EGFR结合,介导EGFR的内吞进程。Tom1L1和Hrs(hepatocyte growth factor regulated tyrosine kinase substrate)、TSG101(tumor susceptibility gene 101)的相互作用表明,它也可能参与了泛素化蛋白分选入多泡体的过程。该文就其在细胞信号转导通路及受体内吞/分选过程的作用作一综述。  相似文献   

3.
Discs large 1 (Dlg1) is a modular scaffolding protein implicated in the control of cell polarity through assembly of specific multiprotein complexes, including receptors, ion channels and signaling proteins, at specialized zones of the plasma membrane. Recent data have shown that in addition to these well‐known interaction partners, Dlg1 may also recruit components of the vesicle trafficking machinery either to the plasma membrane or to transport vesicles. Here, we discuss Dlg1 function in vesicle formation, targeting, tethering and fusion, in both the exocytotic and endocytotic pathways. These pathways contribute to cell functions as major and diverse as glutamatergic activity in the neurons, membrane homeostasis in Schwann cell myelination, insulin stimulation of glucose transport in adipocytes, or endothelial secretion of the hemostatic protein, von Willebrand factor (VWF).  相似文献   

4.
Tom1 (Target of Myb1) is suggested to be involved in the transport of ubiquitinated proteins, through the interaction of its GAT (GGA and Tom1) domain with ubiquitin. Here, we demonstrate that the three-helix bundle of Tom1-GAT has two ubiquitin-binding sites recognizing the hydrophobic Ile44 surface of ubiquitin. The complex crystal structure demonstrates that the first site is a hydrophobic patch on helices alpha1 and alpha2. NMR and biochemical data revealed that the N-terminal half of helix alpha3 of Tom1-GAT constitutes the second, stronger binding site. The double-sided ubiquitin binding enhances the efficiency of recognition of ubiquitinated proteins by Tom1.  相似文献   

5.
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer‐dependent functions of SNX1 and SNX2 have been well documented, potential retromer‐independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin‐7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin‐7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG‐dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1‐ and retromer‐independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin‐7‐mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.  相似文献   

6.
β‐Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11‐positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild‐type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2‐dependent manner. Wild‐type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1.  相似文献   

7.
应用RT-PCR技术检测假基因HMGA1L2在50例良、恶性甲状腺病变中HMGA1L2 mRNA的表达。结果显示HMGA1L2 mRNA在12例结节性甲状腺肿、9例甲状腺腺瘤和15例甲状腺乳头状癌中的阳性表达率均为100%, 而在14例甲状腺滤泡癌中的阳性率为35.7%, 与前3者差异有显著性。该研究首次报告了假基因HMGA1L2 mRNA在良、恶性甲状腺病变中的表达, 并且提示其在甲状腺滤泡癌与腺瘤的鉴别诊断中具有潜在的价值。  相似文献   

8.
The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant‐negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome‐specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant‐negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant‐negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell‐cycle regulation.  相似文献   

9.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   

10.
Cervical cancer is caused by infection with human papillomaviruses (HPV) and is a global concern, particularly in developing countries, which have ~80% of the burden. HPV L1 virus‐like particle (VLP) type–restricted vaccines prevent new infections and associated disease. However, their high cost has limited their application, and cytological screening programmes are still required to detect malignant lesions associated with the nonvaccine types. Thus, there is an urgent need for cheap second‐generation HPV vaccines that protect against multiple types. The objective of this study was to express novel HPV‐16 L1‐based chimaeras, containing cross‐protective epitopes from the L2 minor capsid protein, in tobacco plants. These L1/L2 chimaeras contained epitope sequences derived from HPV‐16 L2 amino acid 108–120, 56–81 or 17–36 substituted into the C‐terminal helix 4 (h4) region of L1 from amino acid 414. All chimaeras were expressed in Nicotiana benthamiana via an Agrobacterium‐mediated transient system and targeted to chloroplasts. The chimaeras were highly expressed with yields of ~1.2 g/kg plant tissue; however, they assembled differently, indicating that the length and nature of the L2 epitope affect VLP assembly. The chimaera containing L2 amino acids 108–120 was the most successful candidate vaccine. It assembled into small VLPs and elicited anti‐L1 and anti‐L2 responses in mice, and antisera neutralized homologous HPV‐16 and heterologous HPV‐52 pseudovirions. The other chimaeras predominantly assembled into capsomeres and other aggregates and elicited weaker humoral immune responses, demonstrating the importance of VLP assembly for the immunogenicity of candidate vaccines.  相似文献   

11.
12.
Catharanthus roseus Receptor‐Like Kinase 1‐like (CrRLK1L) proteins contain two tandem malectin‐like modules in their extracellular domains (ECDs) and function in diverse signaling pathways in plants. Malectin is a carbohydrate‐binding protein in animals and recognizes a number of diglucosides; however, it remains unclear how the two malectin‐like domains in the CrRLK1L proteins sense the ligand molecule. In this study, we reveal the crystal structures of the ECDs of ANXUR1 and ANXUR2, two CrRLK1L members in Arabidopsis thaliana that have critical functions in controlling pollen tube rupture during the fertilization process. We show that the two malectin‐like domains in these proteins pack together to form a rigid architecture. Unlike animal malectin, these malectin‐like domains lack residues involved in binding to the diglucosides, suggesting that they have a distinct ligand‐binding mechanism. A cleft is observed between the two malectin‐like domains, which might function as a potential ligand‐binding pocket.  相似文献   

13.
Most traditional cytotoxic chemotherapeutic agents have poor aqueous solubility and significant toxicity. Hence, there is a need to develop molecule‐targeted drugs. Programmed death‐ligand 1 (PD‐L1) is associated with the prognosis of several cancer types, and blockade of PD‐1/PD‐L1 signaling increases the amplitude of anti‐tumor immunity. In the present study, we investigated the effects of JQ1, a bromodomain and extraterminal‐bromodomain inhibitor, on cell growth, and messenger RNA (mRNA) and protein levels of PD‐L1 in renal cell carcinoma primary culture cells, and prostate, liver, and lung cancer cell lines. The results of the cell counting kit‐8 assay suggested that JQ1 inhibits cell growth in a dose‐dependent manner. The mRNA and protein levels of PD‐L1 decreased in the primary culture of JQ1‐treated renal carcinoma, prostate cancer, liver cancer, and lung cancer cell lines. In addition, the mRNA level of PD‐L2 also decreased in the JQ1‐treated cells. Overall, JQ1 might be a potential anti‐tumor agent.  相似文献   

14.
15.
Interaction between the signal-transducing adapter molecule 1 (STAM1) Vps27/Hrs/Stam (VHS) domain and ubiquitin was investigated by nuclear magnetic resonance (NMR) spectroscopy. NMR evidence showed that the structure of STAM1 VHS domain resembles that of other VHS domains, especially the homologous domain of STAM2. We found that the VHS domain binds to ubiquitin via its hydrophobic patch consisting of N-terminus of helix 2 and C-terminus of helix 4 in which Trp26 on helix 2 plays a pivotal role in the binding. The binding between VHS and ubiquitin seems to be very similar to that between ubiquitin associated domain (UBA) and ubiquitin, however, the direction of α-helices involved in the ubiquitin binding is opposite. Here, we propose a novel ubiquitin binding site and the manner of ubiquitin recognition of the STAM1 VHS domain.

Structured summary

MINT-6804185:STAM1 (uniprotkb:Q92783) binds (MI:0407) to ubiquitin (uniprotkb:P62988) by nuclear magnetic resonance (MI:0077)  相似文献   

16.
The SPFH (stomatin, prohibitin, flotillin, HflC/K) superfamily is composed of scaffold proteins that form ring‐like structures and locally specify the protein–lipid composition in a variety of cellular membranes. Stomatin‐like protein 2 (SLP2) is a member of this superfamily that localizes to the mitochondrial inner membrane (IM) where it acts as a membrane organizer. Here, we report that SLP2 anchors a large protease complex composed of the rhomboid protease PARL and the i‐AAA protease YME1L, which we term the SPY complex (for SLP2–PARL–YME1L). Association with SLP2 in the SPY complex regulates PARL‐mediated processing of PTEN‐induced kinase PINK1 and the phosphatase PGAM5 in mitochondria. Moreover, SLP2 inhibits the stress‐activated peptidase OMA1, which can bind to SLP2 and cleaves PGAM5 in depolarized mitochondria. SLP2 restricts OMA1‐mediated processing of the dynamin‐like GTPase OPA1 allowing stress‐induced mitochondrial hyperfusion under starvation conditions. Together, our results reveal an important role of SLP2 membrane scaffolds for the spatial organization of IM proteases regulating mitochondrial dynamics, quality control, and cell survival.  相似文献   

17.
Aim: To estimate the ethylene diamine tetraacetic acid (EDTA) concentration at which the L1 enzyme activity in the cell extracts of Stenotrophomonas maltophilia can be mostly inhibited. Methods and Results: The effective inhibition concentration of EDTA against the L1 enzyme in the cell extracts was firstly evaluated by using the L2 isogenic mutant of S. maltophilia KJ, KJΔL2, as the assayed strain. Approximately 92% L1 activity was inhibited by 10 mmol l?1 EDTA, which is 100‐fold higher than that from previously reported protocols (0·1 mmol l?1). Three phylogenetic clusters of L1 proteins were revealed from 11 clinical S. maltophilia isolates, with a L1 protein divergence of 0–11%. The EDTA concentration required to inhibit the L1 enzymes of different phylogenetic clusters was estimated to be 10 mmol l?1. Conclusion: The previous nitrocefin‐EDTA protocol for differentially quantifying the L1 and L2 activity in the cell extracts has been modified by raising the added EDTA concentration to 10 mmol l?1. Significance and Impact of the Study: A rapid and accurate method for determination of L1 and L2 activity will provide a convenient tool for enzyme characterization and induction mechanism study of S. maltophilia.  相似文献   

18.
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria‐induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co‐immunoprecipitation, we identified a CLASP1/CD2AP/EB1‐containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14‐3‐3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta‐p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain‐interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1‐binding SxIP motif, as well as functional SH3 domain‐binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non‐infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.  相似文献   

19.
Background information. Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. Results. In the present study, we characterize the ESCRT‐III protein CeVPS‐32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS‐27, CeVPS‐23 and CeVPS‐4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps‐32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps‐32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS‐32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS‐32 and CeVPS‐27/Hrs (hepatocyte‐growth‐factor‐regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS‐27‐positive subdomains are also enriched for the ESCRT‐I protein CeVPS‐23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS‐27 subdomains is not affected by the depletion of CeVPS‐23, CeVPS‐32 or the ATPase CeVPS‐4. Conclusion. Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号