首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

2.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

3.
Vogel R  Siebert F  Mathias G  Tavan P  Fan G  Sheves M 《Biochemistry》2003,42(33):9863-9874
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C[double bond]N, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.  相似文献   

4.
We have applied our recently developed technique of flash induced kinetic infrared spectroscopy to the rhodopsin/Meta I and rhodopsin/Meta II transitions. Features of the infrared spectrum reflecting the C=C-vibration and the isomeric form of the chromophore are in agreement with resonant Raman experiments. Different results are obtained for the C=N-vibration of the Schiff base retinal opsin link. They are interpreted in terms of a Schiff base protonated via an hydrogen bond. A proton transfer in the excited state is suggested to explain the deviating results. In addition we have obtained spectral changes which cannot be attributed to molecular changes in the chromophore. We assume that these spectral features reflect molecular events in the protein part of rhodopsin.  相似文献   

5.
The visual pigment rhodopsin has been extensively studied for the kinetics of its photointermediates by various spectroscopic methods. Unlike such archaeal retinal proteins as bacteriorhodopsin, visual rhodopsin does not thermally recover its dark state after photoexcitation, which precludes repeated excitation of a single sample and thereby complicates time-resolved experiments. Kinetic data on the late rhodopsin photointermediates have so far been available mainly from time-resolved ultraviolet (UV)-visible spectroscopy, but not from Fourier transform infrared (FTIR) spectroscopy. The latter has the advantage of being informative of structural changes of both chromophore and protein, but does not allow the highly reproducible, automated sample exchange procedures available to UV-visible spectroscopy. Using rapid-scan FTIR difference spectroscopy, we obtained time-resolved data sets that were analyzed by a maximum entropy inverse Laplace-transform. Covering the time range from 8 ms to 15 s at temperatures of 0 and -7 degrees C, the transitions from the Lumi to the Meta I and from the Meta I to the Meta II photoproduct states could be resolved. In the transition from Meta I to Meta II, our data reveal a partial deprotonation of the retinal Schiff base preceding the conformational change of the receptor protein to Meta II. The technique and the results are discussed in regard to its advantages as well as its limitations.  相似文献   

6.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

7.
Vogel R  Siebert F  Zhang XY  Fan G  Sheves M 《Biochemistry》2004,43(29):9457-9466
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.  相似文献   

8.
Disruption of an interhelical salt bridge between the retinal protonated Schiff base linked to H7 and Glu113 on H3 is one of the decisive steps during activation of rhodopsin. Using previously established stabilization strategies, we engineered a stabilized E113Q counterion mutant that converted rhodopsin to a UV-absorbing photoreceptor with deprotonated Schiff base and allowed reconstitution into native-like lipid membranes. Fourier-transform infrared difference spectroscopy reveals a deprotonated Schiff base in the photoproducts of the mutant up to the active state Meta II, the absence of the classical pH-dependent Meta I/Meta II conformational equilibrium in favor of Meta II, and an anticipation of active state features under conditions that stabilize inactive photoproduct states in wildtype rhodopsin. Glu181 on extracellular loop 2, is found to be unable to maintain a counterion function to the Schiff base on the activation pathway of rhodopsin in the absence of the primary counterion, Glu113. The Schiff base becomes protonated in the transition to Meta III. This protonation is, however, not associated with a deactivation of the receptor, in contrast to wildtype rhodopsin. Glu181 is suggested to be the counterion in the Meta III state of the mutant and appears to be capable of stabilizing a protonated Schiff base in Meta III, but not of constraining the receptor in an inactive conformation.  相似文献   

9.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.  相似文献   

10.
Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is stored away, thus regulating photoreceptor regeneration.  相似文献   

11.
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.  相似文献   

12.
Vertebrate rhodopsin shares with other retinal proteins the 11-cis-retinal chromophore and the light-induced 11-cis/trans isomerization triggering its activation pathway. However, only in rhodopsin the retinylidene Schiff base bond to the apoprotein is eventually hydrolyzed, making a complex regeneration pathway necessary. Metabolic regeneration cannot be short-cut, and light absorption in the active metarhodopsin (Meta) II intermediate causes anti/syn isomerization around the retinylidene linkage rather than reversed trans/cis isomerization. A new deactivating pathway is thereby triggered, which ends in the Meta III "retinal storage" product. Using time-resolved Fourier transform infrared spectroscopy, we show that the identified steps of receptor activation, including Schiff base deprotonation, protein structural changes, and proton uptake by the apoprotein, are all reversed. However, Schiff base reprotonation is much faster than the activating deprotonation, whereas the protein structural changes are slower. The final proton release occurs with pK approximately 4.5, similar to the pK of a free Glu residue and to the pK at which the isolated opsin apoprotein becomes active. A forced deprotonation, equivalent to the forced protonation in the activating pathway, which occurs against the unfavorable pH of the medium, is not observed. This explains properties of the final Meta III product, which displays much higher residual activity and is less stable than rhodopsin arising from regeneration with 11-cis-retinal. We propose that the anti/syn conversion can only induce a fast reorientation and distance change of the Schiff base but fails to build up the full set of dark ground state constraints, presumably involving the Glu(134)/Arg(135) cluster.  相似文献   

13.
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions contributing to the thermal decay of rhodopsin as follows: thermal isomerization of 11-cis-retinal and hydrolysis of the protonated Schiff base linkage between the 11-cis-retinal chromophore and opsin protein. We used UV-visible spectroscopy and HPLC to examine the kinetics of these reactions at 37 and 55 °C for WT and mutant rhodopsin purified from HEK293 cells. Compared with WT rhodopsin and the D190N mutant, the S186W mutation dramatically increases the rates of both thermal isomerization and dark state hydrolysis of the Schiff base by 1–2 orders of magnitude. The results suggest that the S186W mutant thermally destabilizes rhodopsin by disrupting a hydrogen bond network at the receptor''s active site. The decrease in the thermal stability of dark state rhodopsin is likely to be associated with higher levels of dark noise that undermine the sensitivity of rhodopsin, potentially accounting for night blindness in the early stages of RP. Further studies of the thermal stability of additional pathogenic rhodopsin mutations in conjunction with clinical studies are expected to provide insight into the molecular mechanism of RP and test the correlation between rhodopsin''s thermal stability and RP progression in patients.  相似文献   

14.
The photocycle of the photophobic receptor from Natronobacterium pharaonis, NpSRII, is studied by static and time-resolved step-scan Fourier transform infrared spectroscopy. Both low-temperature static and time-resolved spectra resolve a K-like intermediate, and the corresponding spectra show little difference within the noise of the time-resolved data. As compared to intermediate K of bacteriorhodopsin, relatively large amide I bands indicate correspondingly larger distortions of the protein backbone. The time-resolved spectra identify an intermediate L-like state with surprisingly small additional molecular alterations. With the formation of intermediate M, the Schiff-base proton is transferred to the counterion Asp-75. This state is characterized by larger amide bands indicating larger distortions of the protein. We can identify a second M state that differs only in small-protein bands. Reisomerization of the chromophore to all-trans occurs with the formation of intermediate O. The accelerated decay of intermediate M caused by azide results in another red-shifted intermediate with a protonated Schiff base. The chromophore in this state, however, still has 13-cis geometry. Nevertheless, the reisomerization is still as slow as under the conditions without azide. The results are discussed with respect to mechanisms of the observed proton pumping and the possible roles of the intermediates in receptor activation.  相似文献   

15.
《Biophysical journal》2022,121(21):4109-4118
The rhodopsin mimic is a chemically synthetized complex with retinyl Schiff base (RSB) formed between protein and the retinal chromophore that can mimic the natural rhodopsin-like protein. The artificial rhodopsin mimic is more stable and designable than the natural protein and hence has wider uses in photon detection devices. The mimic structure RSB, like the case in the actual rhodopsin-like protein, undergoes isomerization and protonation throughout the photoreaction process. As a result, understanding the dynamics of the RSB in the photoreaction process is critical. In this study, the ultrafast transient absorption spectra of three mutants of the cellular retinoic acid-binding protein II-based rhodopsin mimic at acidic environment were recorded, from which the related excited-state dynamics of the all-trans protonated RSB (AT-PRSB) were investigated. The transient fluorescence spectra measurements are used to validate some of the dynamic features. We find that the excited-state dynamics of AT-PRSB in three mutants share a similar pattern that differs significantly from the dynamics of 15-cis PRSB of the rhodopsin mimic in neutral solution. By comparing the dynamics across the three mutants, we discovered that the aromatic residues near the β-ionone ring structure of the retinal may help stabilize the AT-PRSB and hence slow down its isomerization rate. The experimental results provide implications on designing a rhodopsin-like protein with significant infrared fluorescence, which can be particularly useful in the applications in biosensing or bioimaging in deeper tissues.  相似文献   

16.
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.  相似文献   

17.
Proteorhodopsin is an ion-translocating member of the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization, leading to transmembrane translocation of a proton toward the extracellular side of the cytoplasmic membrane. Here we report a study on the photoisomerization dynamics of the retinal chromophore of proteorhodopsin, using femtosecond time-resolved spectroscopy, by probing in the visible- and in the midinfrared spectral regions. Experiments were performed both at pH 9.5 (a physiologically relevant pH value in which the primary proton acceptor of the protonated Schiff base, Asp97, is deprotonated) and at pH 6.5 (with Asp97 protonated). Simultaneous analysis of the data sets recorded in the two spectral regions and at both pH values reveals a multiexponential excited state decay, with time constants of ∼0.2 ps, ∼2 ps, and ∼20 ps. From the difference spectra associated with these dynamics, we conclude that there are two chromophore-isomerizaton pathways that lead to the K-state: one with an effective rate of ∼(2 ps)−1 and the other with a rate of ∼(20 ps)−1. At high pH, both pathways are equally effective, with an estimated quantum yield for K-formation of ∼0.7. At pH 6.5, the slower pathway is less productive, which results in an isomerization quantum yield of 0.5. We further observe an ultrafast response of residue Asp227, which forms part of the counterion complex, corresponding to a strengthening of its hydrogen bond with the Schiff base on K-state formation; and a feature that develops on the 0.2 ps and 2 ps timescale and probably reflects a response of an amide II band in reaction to the isomerization process.  相似文献   

18.
细菌视紫红质的质子传输机理   总被引:2,自引:0,他引:2  
细菌视紫红质(bR)是嗜盐菌紫膜中的唯一蛋白质成分, 具有质子泵、电荷分离和光致变色功能. bR分子中的发色团视黄醛通过质子化席夫碱以共价键与Lys216相连. bR分子受可见光照射后, 视黄醛发生从全-反到13-顺式构型的异构化, 导致席夫碱的去质子化,继之以可极化基团位置的改变. 力场的变化引起包括蛋白质三级结构在内的诸多变化, 这些变化促进并保证了质子从细胞质侧向细胞外侧的定向传输.  相似文献   

19.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

20.
The molecular dynamics of the rhodopsin chromophore (11-cis-retinal) has been followed over a 3-ns path, whereby 3 × 106 discrete conformational states of the molecule were recorded. It is shown that within a short time, 0.3–0.4 ns from the start of simulation, the retinal β-ionone ring rotates about the C6–C7 bond through ~60° relative to the initial configuration, and the whole chromophore becomes twisted. The results of ab initio quantum chemical calculations indicate that for the final conformation of the chromophore center (t = 3 ns) the rhodopsin absorption maximum is shifted by 10 nm toward longer wavelengths as compared with the initial state (t = 0). In other words, the energy of transition of such a system into the excited singlet state S1 upon photon capture will be lower than that for the molecule where the β-ionone ring of the chromophore is coplanar to its polyene chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号