首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel series of 3-substituted 2,6-difluorobenzamide derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their in vitro antibacterial activity against various phenotype of Gram-positive and Gram-negative bacteria, and their cell division inhibitory activity against three representative strains. As a result, 3-chloroalkoxy derivative 7, 3-bromoalkoxy derivative 12 and 3-alkyloxy derivative 17 were found to exhibit the best antibacterial activity against Bacillus subtilis with MICs of 0.25–1 μg/mL, and good activity (MIC < 10 μg/mL) against both susceptible and resistant Staphylococcus aureus. Additionally, all the three compounds displayed potent cell division inhibitory activity with MIC values of below 1 μg/mL against Bacillus subtilis and Staphylococcus aureus.  相似文献   

2.
Two new sesquiterpene aminoquinones, langcoquinones A (1) and B (2), together with seven known meroterpenoids (3⿿9), were isolated from the marine sponge Spongia sp. collected in Vietnam. Their structures were determined on the basis of spectroscopic analyses and comparisons with published data. The antibacterial activities of the isolated compounds (1⿿9) were investigated against four bacterial strains. Among these, the new sesquiterpene aminoquinones (1 and 2) and the known related compounds (3, 5, 6, 8, and 9) exhibited significant antibacterial activities against Staphylococcus aureus and Bacillus subtilis, with MICs ranging from 6.25 to 12.5 μM.  相似文献   

3.
Muchimangins are benzophenone-xanthone hybrid polyketides produced by Securidaca longepedunculata. However, their biological activities have not been fully investigated, since they are minor constituents in this plant. To evaluate the possibility of muchimangins as antibacterial agent candidates, five muchimangin analogs were synthesized from 2,4,5-trimethoxydiphenyl methanol and the corresponding xanthones, by utilizing p-toluenesulfonic acid monohydrate for the Brønsted acid-catalysis. The antibacterial assays against Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacteria, Klebsiella pneumoniae and Escherichia coli, revealed that the muchimangin analogs (±)-1,3,6,8-tetrahydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (1), (±)-1,3,6-trihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (2), and (±)-1,3-dihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (3) showed significant activities against S. aureus, with MIC values of 10.0, 10.0, and 25.0 μM, respectively. Analogs (±)-1 and (±)-2 also exhibited antibacterial activities against B. subtilis, with MIC values of 50.0 and 12.5 μM, respectively. Furthermore, (+)-3 enhanced the antibacterial activity against S. aureus, with a MIC value of 10 μM.  相似文献   

4.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

5.
Three series of rhodanine derivatives bearing a quinoline moiety (6ah, 7ag, and 8ae) have been synthesized, characterized, and evaluated as antibacterial agents. The majority of these compounds showed potent antibacterial activities against several different strains of Gram-positive bacteria, including multidrug-resistant clinical isolates. Of the compounds tested, 6g and 8c were identified as the most effective with minimum inhibitory concentration (MIC) values of 1 μg/mL against multidrug-resistant Gram-positive organisms, including methicillin-resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA, respectively). None of the compounds exhibited any activity against the Gram-negative bacteria Escherichia coli 1356 at 64 μg/mL. The cytotoxic activity assay showed that compounds 6g, 7g and 8e exhibited in vitro antibacterial activity at non-cytotoxic concentrations. Thus, these studies suggest that rhodanine derivatives bearing a quinoline moiety are interesting scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

6.
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1 × MIC and 4 × MIC.  相似文献   

7.
An effective intramolecular C–H arylation reaction catalyzed by a bimetallic catalytic system Pd(OAc)2/CuI for the synthesis of fluorine-substituted carbazoles from corresponding N-phenyl-2-haloaniline derivatives under ligand free conditions is demonstrated. The established method is effective for both N-phenyl-2-bromoaniline and N-phenyl-2-chloroaniline, and requires the low loading of Pd(OAc)2 (0.5 mol %). A series of new fluorinated carbazoles were synthesized in excellent yields using the protocol (>83%, 19 examples) and were fully characterized by 1H, 13C and 19F NMR spectral data, HRMS and elemental analysis. All compounds were evaluated for their antibacterial activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and methicillin-resistant S. aureus with resistance to gentamicin) by serial dilution technique. All tested compounds showed antibacterial activity against three test strains (S. aureus, B. subtilis and MRSA), and most of these compounds displayed pronounced antimicrobial activities against these three strains with low MIC values ranging from 0.39 to 6.25 μg/mL. Among them, compounds 7 and 14 exhibited potent inhibitory activity better than reference drugs meropenem and streptomycin. Three compounds (2, 4 and 5) showed antibacterial activity against E. coli. with MIC values from 12.5 to 25 μg/mL.  相似文献   

8.
MurA is an intracellular bacterial enzyme that is essential for peptidoglycan biosynthesis, and is therefore an important target for antibacterial drug discovery. We report the synthesis, in silico studies and extensive structure–activity relationships of a series of quinazolinone-based inhibitors of MurA from Escherichia coli. 3-Benzyloxyphenylquinazolinones showed promising inhibitory potencies against MurA, in the low micromolar range, with an IC50 of 8 µM for the most potent derivative (58). Furthermore, furan-substituted quinazolinones (38, 46) showed promising antibacterial activities, with MICs from 1 µg/mL to 8 µg/mL, concomitant with their MurA inhibitory potencies. These data represent an important step towards the development of novel antimicrobial agents to combat increasing bacterial resistance.  相似文献   

9.
Two new compounds, named leptospyranonaphthazarin A (1) and leptosnaphthoic acid A (2), together with four known compounds (3–6) were isolated from an endophytic fungus Leptosphaerulina sp. SKS032. Their structures were assigned using spectroscopic methods, computational methods, and single-crystal X-ray diffraction analysis. In the antibiotic assay, compounds 1, 2, and 6 exhibited antibacterial activities against Staphylococcus aureus with minimal inhibitory concentration (MIC) values of 25.0, 50.0, and 50.0 μg/mL, respectively.  相似文献   

10.
A series of novel 11-O-carbamoyl clarithromycin ketolides were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed improved activity compared with references against erythromycin-resistant S. pneumoniae A22072 expressing the mef gene, S. pneumoniae B1 expressing the erm gene and S. pneumoniae AB11 expressing the mef and erm genes. In particular, compounds 9, 18, 19 and 22 showed the most potent activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.5 μg/mL. Furthermore, compounds 11, 18, 19, 24 and 29 were also found to exhibit favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.125–1 μg/mL, and moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372.  相似文献   

11.
Bioassay-directed phytochemical study of the Jerusalem artichoke (Helianthus tuberosus L.) leaves led to the isolation of a new sesquiterpene lactone of 3-Hydroxy-8β-tigloyloxy-1,10-dehydroariglovin (1), ten known sesquiterpene lactones (211) and two known flavones (1213). Their chemical structures were elucidated on the basis of NMR (1D and 2D) and mass spectroscopic analysis. The cytotoxic activities of those compounds were subsequently tested against the MCF-7, A549 and HeLa cancer cells lines. The results indicated that sesquiterpene lactones 111 exhibited consistent cytotoxicity against all three cancer cell lines, while flavones 12 and 13 showed selective inhibitory activity against HeLa cell lines. Among them, compound 3 exhibited significant growth inhibitory activity against all three cell lines. The IC50 values of compound 3 against MCF-7, A549 and HeLa were 1.97 ± 0.04, 7.79 ± 0.44, 9.87 ± 0.20 μg/ml, respectively. In addition, some structure–activity relationships of these sesquiterpene lactones for cytotoxicity were explored and summarized in this study.  相似文献   

12.
FtsZ is an essential protein for bacterial cell division, and an attractive and underexploited novel antibacterial target protein. Screening of Indonesian plants revealed the inhibitory activity of the methanol extract of Glycyrrhiza glabra on the Bacillus subtilis FtsZ (BsFtsZ) GTPase, and further bioassay-guided fractionation of the active methanol extract led to the isolation of seven known polyketides (1–7). Among them, gancaonin I (1), glycyrin (3), and isolicoflavanol (5) exhibited anti-BsFtsZ GTPase activities, at levels comparable to that of the synthetic FtsZ inhibitor, Zantrin Z3. Enzymatic assays using a BsFtsZ Val307R mutant protein and in silico simulations suggested that 1, 3, and 5 bind to the cleft on BsFtsZ, as in the case of the previously reported uncompetitive FtsZ inhibitor, PC190723, and thereby display their significant anti-BsFtsZ inhibitory activities. Furthermore, 1 also showed significant inhibitory activity against B. subtilis, with a MIC value of 5 μM. The present study provides new insights into the naturally occurring B. subtilis growth inhibitors.  相似文献   

13.
A new series of bis(indolyl)-pyridine derivatives 6(a–m) were synthesized by Chichibabin reaction process and evaluated for antileishmanial and antibacterial activities to establish structure–activity relationship. The synthesis was carried out through one-pot multicomponent reaction of 3-acetylindole, aromatic aldehydes, and ammonium acetate in the presence of camphor-10-sulfonic acid as a catalyst. The compounds 6d (IC50 = 102.47 μM) and 6f (IC50 = 99.49 μM) had shown promising antileishmanial against L. donovani promastigotes when compared with standard sodium stibogluconate (IC50 = 490.00 μM). All the synthesized compounds (MIC range = 41.35–228.69 μg/mL) had shown potent antibacterial activity than standard ampicillin (MIC range = 100.00–250.00 μg/mL) against all the tested bacterial strains. In silico ADME and metabolic site prediction studies were also held out to set an effective lead candidate for the future antileishmanial and antibacterial drug discovery initiatives.  相似文献   

14.
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin.  相似文献   

15.
An endophytic fungus (Talaromyces stipitatus SK-4) was isolated from the leaves of a mangrove plant Acanthus ilicifolius. Its crude extract exhibited significant antibacterial activity and was purified to afford two new depsidones, talaromyones A and B (1 and 2), along with five known depsidone analogs (3–7). Their structures, including absolute configuration, were elucidated through extensive spectroscopic data analysis and modified Mosher's method. Compound 2 showed antibacterial activity against Bacillus subtilis with an MIC value of 12.5 μg/mL. In the inhibitory assay against α-glucosidase, compounds 2, 4 and 5 displayed moderate activities with IC50 values ranging from 48.4 to 99.8 μM.  相似文献   

16.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

17.
In the course of our search for hypoxia-selective growth inhibitors against cancer cells, a sesquiterpene phenol, dictyoceratin-C (1), was isolated from the Indonesian marine sponge of Dactylospongia elegans under the guidance of the constructed bioassay. Dictyoceratin-C (1) inhibited proliferation of human prostate cancer DU145 cells selectively under hypoxic condition in a dose-dependent manner at the concentrations ranging from 1.0 to 10 μM. The subsequent structure–activity relationship study using nine sesquiterpene phenol/quinones (210), which were isolated from marine sponge, was executed. We found that smenospondiol (2) also exhibited the similar hypoxia-selective growth inhibitory activity against DU145 cells, and the para-hydroxybenzoyl ester moiety would be important for hypoxia-selective growth inhibitory activity of 1. In addition, the mechanistic analysis of dictyoceratin-C (1) revealed that the 10 μM of 1 inhibited accumulation of Hypoxia-Inducible Factor-1α under hypoxic condition.  相似文献   

18.
Two new ent-kaurane diterpenoids, 16α,17,19-trihydroxy-18-nor-ent-kauran-4β-ol (1) and 17-chloro-16β-hydroxy-ent-kauran-19-oic acid (2) were isolated from the whole plant of Wedelia trilobata, together with five known ones (37). Their structures were elucidated on the basis of extensive spectroscopic analyses, including NMR and MS techniques. Compound 1 is an 18-nor-ent-kaurane type diterpenoid which is rare in nature, and compound 2 is the first chlorine-containing ent-kaurane diterpenoid so far isolated from plant family of Asteraceae. Known compound 4 was obtained from the genus Wedelia for the first time. Compounds 46 selectively showed in vitro antibacterial activity against three assayed Gram-(+) bacteria, especially 5 and 6 which showed the antibacterial activity against Staphylococcus aureus with MIC values (3.125–6.25 μg/mL) comparable to reference compound Kanamycin (MIC 3.125 μg/mL). Compounds 46 further displayed significant antibacterial activity against Gram-(−) bacterium Shigella dysenteriae with MIC value 3.125–12.5 μg/mL.  相似文献   

19.
A series of 4-hydroxycoumarin derivatives were designed and synthesized in order to find some more potent antibacterial drugs. Their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4g represented the most potent antibacterial activity against Bacillus subtilis and S. aureus with MIC of 0.236, 0.355 μg/mL, respectively. What’s more, it showed the most potent activity against SaFabI with IC50 of 0.57 μM. Molecular docking of 4g into S. aureus Enoyl-ACP-reductase active site were performed to determine the probable binding mode, while the QSAR model was built to check the previous work as well as to introduce new directions.  相似文献   

20.
The antibacterial activity-guided purification of the dichloromethane fraction of the aerial parts of Comarum salesovianum (Steph.) Aschers.et Gr. led to the isolation and elucidation of three phenolic lipid derivatives: 6-(non-8-enyl) salicylic acid (1), 6-nonyl salicylic acid (2) and 3-(non-8-enyl) phenol (3), which were found for the first time in the natural source. The equal mixture of compounds 1 and 2 exhibited potent inhibitory activity against all tested Gram-positive bacterial strains (Enterococcus faecalis, Micrococcus luteus, Staphylococcus epidermidis and Staphylococcus aureus) with inhibitory zones of 12.2–22.1 mm, whereas each single compound showed weaker activity than the mixture of 1 and 2. However, compound 3 strongly inhibited (29.9 ± 1.8) the growth of M. luteus. The presence of salicylic acid with the unsaturated aliphatic side chain is essential for the antibacterial activity strength of phenolic lipid molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号