共查询到20条相似文献,搜索用时 15 毫秒
1.
Van Cam Nguyen Yuki Nakamura Kazue Kanehara 《The Plant journal : for cell and molecular biology》2019,99(3):478-493
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER‐synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue‐specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin‐induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis. 相似文献
2.
Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes 总被引:13,自引:0,他引:13
下载免费PDF全文

Soluble NSF attachment protein receptor (SNARE) proteins are essential for membrane fusion in transport between the yeast ER and Golgi compartments. Subcellular fractionation experiments demonstrate that the ER/Golgi SNAREs Bos1p, Sec22p, Bet1p, Sed5p, and the Rab protein, Ypt1p, are distributed similarly but localize primarily with Golgi membranes. All of these SNARE proteins are efficiently packaged into COPII vesicles and suggest a dynamic cycling of SNARE machinery between ER and Golgi compartments. Ypt1p is not efficiently packaged into vesicles under these conditions. To determine in which membranes protein function is required, temperature-sensitive alleles of BOS1, BET1, SED5, SLY1, and YPT1 that prevent ER/Golgi transport in vitro at restrictive temperatures were used to selectively inactivate these gene products on vesicles or on Golgi membranes. Vesicles bearing mutations in Bet1p or Bos1p inhibit fusion with wild-type acceptor membranes, but acceptor membranes containing these mutations are fully functional. In contrast, vesicles bearing mutations in Sed5p, Sly1p, or Ypt1p are functional, whereas acceptor membranes containing these mutations block fusion. Thus, this set of SNARE proteins is symmetrically distributed between vesicle and acceptor compartments, but they function asymmetrically such that Bet1p and Bos1p are required on vesicles and Sed5p activity is required on acceptor membranes. We propose the asymmetry in SNARE protein function is maintained by an asymmetric distribution and requirement for the Ypt1p GTPase in this fusion event. When a transmembrane-anchored form of Ypt1p is used to restrict this GTPase to the acceptor compartment, vesicles depleted of Ypt1p remain competent for fusion. 相似文献
3.
4.
Endoplasmic reticulum chaperone Gp96 controls actomyosin dynamics and protects against pore‐forming toxins
下载免费PDF全文

Francisco Sarmento Mesquita Cláudia Brito Maria J Mazon Moya Jorge Campos Pinheiro Serge Mostowy Didier Cabanes Sandra Sousa 《EMBO reports》2017,18(2):303-318
During infection, plasma membrane (PM) blebs protect host cells against bacterial pore‐forming toxins (PFTs), but were also proposed to promote pathogen dissemination. However, the details and impact of blebbing regulation during infection remained unclear. Here, we identify the endoplasmic reticulum chaperone Gp96 as a novel regulator of PFT‐induced blebbing. Gp96 interacts with non‐muscle myosin heavy chain IIA (NMHCIIA) and controls its activity and remodelling, which is required for appropriate coordination of bleb formation and retraction. This mechanism involves NMHCIIA–Gp96 interaction and their recruitment to PM blebs and strongly resembles retraction of uropod‐like structures from polarized migrating cells, a process that also promotes NMHCIIA–Gp96 association. Consistently, Gp96 and NMHCIIA not only protect the PM integrity from listeriolysin O (LLO) during infection by Listeria monocytogenes but also affect cytoskeletal organization and cell migration. Finally, we validate the association between Gp96 and NMHCIIA in vivo and show that Gp96 is required to protect hosts from LLO‐dependent killing. 相似文献
5.
Yuya Nasu Hirotaka Kato Ayako Sedohara Shin‐ichiro Nishimatsu Masao Sakai 《Development, growth & differentiation》2014,56(9):640-652
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β‐catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage‐stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA‐injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8‐KDEL) could dorsalize Xenopus embryos. Finally, Wnt8‐induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization. 相似文献
6.
Chao DS Hay JC Winnick S Prekeris R Klumperman J Scheller RH 《The Journal of cell biology》1999,144(5):869-881
The ER/Golgi soluble NSF attachment protein receptor (SNARE) membrin, rsec22b, and rbet1 are enriched in approximately 1-micrometer cytoplasmic structures that lie very close to the ER. These appear to be ER exit sites since secretory cargo concentrates in and exits from these structures. rsec22b and rbet1 fused to fluorescent proteins are enriched at approximately 1-micrometer ER exit sites that remained more or less stationary, but periodically emitted streaks of fluorescence that traveled generally in the direction of the Golgi complex. These exit sites were reused and subsequent tubules or streams of vesicles followed similar trajectories. Fluorescent membrin- enriched approximately 1-micrometer peripheral structures were more mobile and appeared to translocate through the cytoplasm back and forth, between the periphery and the Golgi area. These mobile structures could serve to collect secretory cargo by fusing with ER-derived vesicles and ferrying the cargo to the Golgi. The post-Golgi SNAREs, syntaxin 6 and syntaxin 13, when fused to fluorescent proteins each displayed characteristic patterns of movement. However, syntaxin 13 was the only SNARE whose life cycle appeared to involve interactions with the plasma membrane. These studies reveal the in vivo spatiotemporal dynamics of SNARE proteins and provide new insight into their roles in membrane trafficking. 相似文献
7.
Xiaoyu Shi Lei Hai Kavitha Govindasamy Jian Gao Isabelle Coppens Junjie Hu Qian Wang Purnima Bhanot 《Molecular microbiology》2020,114(3):454-467
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1’s disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins. 相似文献
8.
The endoplasmic reticulum (ER) is a continuous membrane system comprising the nuclear envelope, ribosome‐studded peripheral sheets and an interconnected network of smooth tubules extending throughout the cell. Although protein biosynthesis, transport and quality control in the ER have been studied extensively, mechanisms underlying the notably diverse architecture of the ER have only emerged recently; this review highlights these new findings and how they relate to ER functional specializations. Several protein families, including reticulons and DP1/REEPs/Yop1, harbour hydrophobic hairpin domains that shape high‐curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1 family of dynamin‐related GTPases mediate the formation of three‐way junctions that characterize the tubular ER network, and additional classes of hydrophobic hairpin‐containing ER proteins interact with and remodel the microtubule cytoskeleton. Flat ER sheets have a different complement of proteins implicated in shaping, cisternal stacking and microtubule interactions. Finally, several shaping proteins are mutated in hereditary spastic paraplegias, emphasizing the particular importance of proper ER morphology and distribution for highly polarized cells. 相似文献
9.
10.
Andree Yeramian Alvar Vea Sandra Benítez Joan Ribera Mónica Domingo Maria Santacana Montserrat Martinez Oscar Maiques Joan Valls Xavier Dolcet Ramón Vilella Elisa Cabiscol Xavier Matias‐Guiu Rosa M. Marti 《Pigment cell & melanoma research》2016,29(3):352-371
Heat shock proteins (HSPs), are molecular chaperones that assist the proper folding of nascent proteins. This study aims to evaluate the antitumour effects of the hsp90 inhibitor NVP‐AUY922 in melanoma, both in vitro and in vivo. Our results show that NVP‐AUY922 inhibits melanoma cell growth in vitro, with down regulation of multiple signalling pathways involved in melanoma progression such as NF‐?B and MAPK/ERK. However, NVP‐AUY922 was unable to limit tumour growth in vivo. Cotreatment of A375M xenografts with NVP‐AUY922 and PFT‐μ, a dual inhibitor of both hsp70 and autophagy, induced a synergistic increase of cell death in vitro, and delayed tumour formation in A375M xenografts. PFT‐μ depleted cells from the reduced form of glutathione (GSH) and increased oxidative stress. The oxidative stress induced by PFT‐μ further enhanced NVP‐AUY922‐induced cytotoxic effects. These data suggest a potential therapeutic role for NVP‐AUY922 used in combination with PFT‐μ, in melanoma. 相似文献
11.
Zelazny E Miecielica U Borst JW Hemminga MA Chaumont F 《The Plant journal : for cell and molecular biology》2009,57(2):346-355
Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4–6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism. 相似文献
12.
《Journal of cellular and molecular medicine》2017,21(6):1094-1105
Bromodomain‐containing protein 7 (BRD7) is a tumour suppressor that is known to regulate many pathological processes including cell growth, apoptosis and cell cycle. Endoplasmic reticulum (ER) stress‐induced apoptosis plays a key role in diabetic cardiomyopathy (DCM). However, the molecular mechanism of hyperglycaemia‐induced myocardial apoptosis is still unclear. We intended to determine the role of BRD7 in high glucose (HG)‐induced apoptosis of cardiomyocytes. In vivo, we established a type 1 diabetic rat model by injecting a high‐dose streptozotocin (STZ), and lentivirus‐mediated short hairpin RNA (shRNA) was used to inhibit BRD7 expression. Rats with DCM exhibited severe myocardial remodelling, fibrosis, left ventricular dysfunction and myocardial apoptosis. The expression of BRD7 was up‐regulated in the heart of diabetic rats, and inhibition of BRD7 had beneficial effects against diabetes‐induced heart damage. In vitro, H9c2 cardiomyoblasts was used to investigate the mechanism of BRD7 in HG‐induced apoptosis. Treating H9c2 cardiomyoblasts with HG elevated the level of BRD7 via activation of extracellular signal‐regulated kinase 1/2 (ERK1/2) and increased ER stress‐induced apoptosis by detecting spliced/active X‐box binding protein 1 (XBP‐1s) and C/EBP homologous protein (CHOP). Furthermore, down‐regulation of BRD7 attenuated HG‐induced expression of CHOP via inhibiting nuclear translocation of XBP‐1s without affecting the total expression of XBP‐1s. In conclusion, inhibition of BRD7 appeared to protect against hyperglycaemia‐induced cardiomyocyte apoptosis by inhibiting ER stress signalling pathway. 相似文献
13.
Annemarie Kralt Marco Carretta Muriel Mari Fulvio Reggiori Anton Steen Bert Poolman Liesbeth M. Veenhoff 《Traffic (Copenhagen, Denmark)》2015,16(2):135-147
Membrane junctions or contact sites are close associations of lipid bilayers of heterologous organelles. Ist2 is an endoplasmic reticulum (ER)‐resident transmembrane protein that mediates associations between the plasma membrane (PM) and the cortical ER (cER) in baker's yeast. We asked the question what structure in Ist2 bridges the up to 30 nm distance between the PM and the cER and we noted that the region spacing the transmembrane domain from the cortical sorting signal interacting with the PM is predicted to be intrinsically disordered (ID). In Ssy1, a protein that was not previously described to reside at membrane junctions, we recognized a domain organization similar to that in Ist2. We found that the localization of both Ist2 and Ssy1 at the cell periphery depends on the presence of a PM‐binding domain, an ID linker region of sufficient length and a transmembrane domain that most probably resides in the ER. We show for the first time that an ID amino acid domain bridges adjacent heterologous membranes. The length and flexibility of ID domains make them uniquely eligible for spanning large distances, and we suggest that this domain structure occurs more frequently in proteins that mediate the formation of membrane contact sites. 相似文献
14.
Francesca Moretti Phil Bergman Stacie Dodgson David Marcellin Isabelle Claerr Jonathan M Goodwin Rowena DeJesus Zhao Kang Christophe Antczak Damien Begue Debora Bonenfant Alexandra Graff Christel Genoud John S Reece‐Hoyes Carsten Russ Zinger Yang Gregory R Hoffman Matthias Mueller Leon O Murphy Ramnik J Xavier Beat Nyfeler 《EMBO reports》2018,19(9)
Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well‐characterized autophagy‐related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2‐ and DFCP1‐positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and β‐oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER‐localized regulator of autophagosome biogenesis and lipid mobilization. 相似文献
15.
Tolley N Sparkes I Craddock CP Eastmond PJ Runions J Hawes C Frigerio L 《The Plant journal : for cell and molecular biology》2010,64(3):411-418
Reticulons are integral endoplasmic reticulum (ER) membrane proteins that have the ability to shape the ER into tubules. It has been hypothesized that their unusually long conserved hydrophobic regions cause reticulons to assume a wedge-like topology that induces membrane curvature. Here we provide proof of this hypothesis. When over-expressed, an Arabidopsis thaliana reticulon (RTNLB13) localized to, and induced constrictions in, cortical ER tubules. Ectopic expression of RTNLB13 was sufficient to induce ER tubulation in an Arabidopsis mutant (pah1 pah2) whose ER membrane is mostly present in a sheet-like form. By sequential shortening of the four transmembrane domains (TMDs) of RTNLB13, we show that the length of the transmembrane regions is directly correlated with the ability of RTNLB13 to induce membrane tubulation and to form low-mobility complexes within the ER membrane. We also show that full-length TMDs are necessary for the ability of RTNLB13 to reside in the ER membrane. 相似文献
16.
Zhejun Cai Baoqing Liu Jia Wei Zurong Fu Yidong Wang Yaping Wang Jian Shen Liangliang Jia Shengan Su Xiaoya Wang Xiaoping Lin Han Chen Fei Li Jian'an Wang Meixiang Xiang 《Aging cell》2017,16(6):1334-1341
Aortic valve (AoV) calcification is common in aged populations. Its subsequent aortic stenosis has been linked with increased morbidity, but still has no effective pharmacological intervention. Our previous data show endoplasmic reticulum (ER) stress is involved in AoV calcification. Here, we investigated whether deficiency of ER stress downstream effector CCAAT/enhancer‐binding protein homology protein (CHOP) may prevent development of AoV calcification. AoV calcification was evaluated in Apoe?/? mice (n = 10) or in mice with dual deficiencies of ApoE and CHOP (Apoe?/?CHOP?/?, n = 10) fed with Western diet for 24 weeks. Histological and echocardiographic analysis showed that genetic ablation of CHOP attenuated AoV calcification, pro‐calcification signaling activation, and apoptosis in the leaflets of Apoe?/? mice. In cultured human aortic valvular interstitial cells (VIC), we found oxidized low‐density lipoprotein (oxLDL) promoted apoptosis and osteoblastic differentiation of VIC via CHOP activation. Using conditioned media (CM) from oxLDL‐treated VIC, we further identified that oxLDL triggered osteoblastic differentiation of VIC via paracrine pathway, while depletion of apoptotic bodies (ABs) in CM suppressed the effect. CM from oxLDL‐exposed CHOP‐silenced cells prevented osteoblastic differentiation of VIC, while depletion of ABs did not further enhance this protective effect. Overall, our study indicates that CHOP deficiency protects against Western diet‐induced AoV calcification in Apoe?/? mice. CHOP deficiency prevents oxLDL‐induced VIC osteoblastic differentiation via preventing VIC‐derived ABs releasing. 相似文献
17.
Michal Pyc Yingqi Cai Satinder K. Gidda Olga Yurchenko Sunjung Park Franziska K. Kretzschmar Till Ischebeck Oliver Valerius Gerhard H. Braus Kent D. Chapman John M. Dyer Robert T. Mullen 《The Plant journal : for cell and molecular biology》2017,92(6):1182-1201
Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady‐state maintenance and turnover of plant LDs, particularly in non‐seed tissues, are relatively unknown. Previously, we showed that the LD‐associated proteins (LDAPs) are a family of plant‐specific, LD surface‐associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two‐hybrid library using the Arabidopsis LDAP3 isoform as ‘bait’ in an effort to identify other novel LD protein constituents. One of the candidate LDAP3‐interacting proteins was Arabidopsis At5g16550, which is a plant‐specific protein of unknown function that we termed LDIP (LDAP‐interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α‐helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T‐DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds. 相似文献
18.
Rongxue Zhang Hong Chen Mei Duan Fugui Zhu Jiangqi Wen Jiangli Dong Tao Wang 《The Plant journal : for cell and molecular biology》2019,98(4):680-696
Recent studies on E3 of endoplasmic reticulum (ER)‐associated degradation (ERAD) in plants have revealed homologs in yeast and animals. However, it remains unknown whether the plant ERAD system contains a plant‐specific E3 ligase. Here, we report that MfSTMIR, which encodes an ER‐membrane‐localized RING E3 ligase that is highly conserved in leguminous plants, plays essential roles in the response of ER and salt stress in Medicago. MfSTMIR expression was induced by salt and tunicamycin (Tm). mtstmir loss‐of‐function mutants displayed impaired induction of the ER stress‐responsive genes BiP1/2 and BiP3 under Tm treatment and sensitivity to salt stress. MfSTMIR promoted the degradation of a known ERAD substrate, CPY*. MfSTMIR interacted with the ERAD‐associated ubiquitin‐conjugating enzyme MtUBC32 and Sec61‐translocon subunit MtSec61γ. MfSTMIR did not affect MtSec61γ protein stability. Our results suggest that the plant‐specific E3 ligase MfSTMIR participates in the ERAD pathway by interacting with MtUBC32 and MtSec61γ to relieve ER stress during salt stress. 相似文献
19.
A membrane preparation that contains proteins characteristic of the rough endoplasmic reticulum 总被引:1,自引:0,他引:1
A Amar-Costesec M Hortsch C Turu 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,62(3):281-288
We describe a procedure for disassembling rat liver rough microsomes, which allows the purification of the rough endoplasmic reticulum (ER) membrane. Membrane-bound ribosomes and adsorbed proteins are first detached by washing rough microsomes with 5 mM Na-pyrophosphate. In a second step, the vesicle membrane is opened by digitonin, with concomitant release of the luminal content. The purification is monitored at each step by electron microscopy, and by assaying chemical constituents (protein, phospholipid, RNA) and marker enzymes for the main subcellular organelles. The final membrane preparation is representative of the ER, since it contains 24.1% of the liver glucose 6-phosphatase with a relative specific activity of 14.2. Contaminants represent less than 5% of its protein content. SDS-polyacrylamide gel electrophoresis, followed by immunoblot analysis, reveals that the ribophorins I and II, two established markers of the rough (d) domain are still present in the final membrane preparation. It also contains the docking protein (or signal recognition particle receptor) and protein disulfide isomerase, and has conserved the functional capacity to remove co- and post-translationally the signal peptide of pre-secretory proteins. The membrane preparation is suitable for studies on the polypeptide composition of the d domain. 相似文献
20.
- Microcystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well‐established target of microcystin toxicity, its effect on filamentous actin (F‐actin) in plant cells has not yet been studied.
- Τhe effects of microcystin‐LR (MC‐LR) and an extract of a microcystin‐producing freshwater cyanobacterial strain (Microcystis flos‐aquae TAU‐MAC 1510) on the cytoskeleton (F‐actin and microtubules) of Oryza sativa (rice) root cells were studied with light, confocal, and transmission electron microscopy. Considering the role of F‐actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract‐treated cells were also examined.
- F‐actin in both MC‐LR- and extract‐treated meristematic and differentiating root cells exhibited time‐dependent alterations, ranging from disorientation and bundling to the formation of ring‐like structures, eventually resulting in a collapse of the F‐actin network after longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract‐treated roots, specifically affecting the mitotic events. As a consequence of F‐actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated.
- These results support that F‐actin is a prominent target of MC‐LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on the F‐actin cytoskeleton.