首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK) cells has been utilized. Proteoglycans were prepared from conditioned medium by DEAE anion exchange chromatography. The eluted PGs were treated with heparitinase or chondroitinase ABC (cABC), separately or combined, followed by SDS-PAGE. Western blot analysis, using antibodies specific for various PG core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan, bamacan, and versican (PG-M). These PGs are also associated with mammalian kidney tubules in vivo.  相似文献   

2.
The neonatal Fc receptor (FcRn) transports IgG across epithelial cell barriers to provide maternal antibodies to offspring and serves as a protection receptor by rescuing endocytosed IgG and albumin from lysosomal degradation. Here we describe the generation of polarized Madin-Darby canine kidney (MDCK) cells expressing rat FcRn (rFcRn) to investigate the potential requirement for ligand bivalency in FcRn-mediated transport. The rFcRn-MDCK cells bind, internalize and bidirectionally transcytose the bivalent ligands IgG and Fc across polarized cell monolayers. However, they cannot be used to study FcRn-mediated transport of the monovalent ligand albumin, as we observe no specific binding, internalization or transcytosis of rat albumin. To address whether ligand bivalency is required for transport, the ability of rFcRn to transcytose and recycle wild-type Fc homodimers (wtFc; two FcRn-binding sites) and a heterodimeric Fc (hdFc; one FcRn-binding site) was compared. We show that ligand bivalency is not required for transcytosis or recycling, but that wtFc is transported more efficiently than hdFc, particularly at lower concentrations. We also demonstrate that hdFc and wtFc have different intracellular fates, with more hdFc than wtFc being trafficked to lysosomes and degraded, suggesting a role for avidity effects in FcRn-mediated IgG transport.  相似文献   

3.
We investigate the influence of the dimensionality and the biochemistry of the culture system on the cellular functionality by analyzing the protein expression levels in Madin–Darby canine kidney (MDCK) cells grown in 3‐D and 2‐D substrates. We cultured MDCK cells on a hard and flat 2‐D uncoated plastic surface, on a 2‐D collagen‐coated plastic surface and in 3‐D collagen gel and employed 2‐D gel electrophoresis, MALDI‐TOF‐MS, and LC‐MS/MS analysis to identify the differentially regulated proteins. We found significant differences in the expression of antioxidant proteins, actin‐binding proteins, glycolytic enzymes, and heat‐shock proteins/chaperons among the three types of cultures. While MDCK cells cultured in 3‐D collagen up‐regulate antioxidant proteins and proteins involved in the dynamic remodeling of the actin cytoskeleton, 2‐D collagen‐coated plastic surfaces induce the up‐regulation of glycolytic enzymes. Our data shows that the culture conditions have profound effects on the physiology of the cell. Culture in 3‐D collagen induces a differentiated polarized phenotype. In contrast, collagen‐coated 2‐D substrates favor a tumor‐like phenotype with increased glycolysis. Thus, the suitability of 2‐D cultures to study the physiological behavior of cells, especially in drug discovery, bioprocessing, and toxicology, should be carefully reconsidered.  相似文献   

4.
The Madin-Darby canine kidney (MDCK) cell line has been proposed as a model for studying intercalated (IC) cells of the renal cortical collecting duct. The IC cells are characterized by peanut lectin (PNA) binding capacity, carbonic anhydrase (CA) activity and Cl-–HCO 3 - exchange mediated by a band 3-related protein. It has been suggested that these properties are also expressed in MDCK cells. So far however, the nature of the specific protein involved in Cl-–HCO 3 - exchange, the type of CA isozyme and the relationship between these two characteristics and PNA binding, have not been investigated in MDCK cells by immunocytochemical methods. Using two antibodies raised against human erythrocyte band 3 protein and two against human erythrocyte CA I and II isozymes, our study provides evidence that a protein related to band 3 is expressed in about 5% of cultured MDCK cells; these band 3-positive cells do not bind PNA and are not reactive for CAI or CAII. About 30% of the MDCK cells bind PNA, two-thirds of which are also CAII-positive. A majority (about 65%) of MDCK cells is not reactive for the three markers used; their density is increased after incubation with aldosterone. These data indicate (i) that the Cl-–HCO 3 - exchanger of the MDCK cells could be related to human erythrocyte band 3, (ii) that the CA activity of the MDCK cell line bears antigenic identity with the erythrocyte CA II isozyme and (iii) that the latter is always co-localized with PNA binding. These results provide immunocytochemical evidence for the heterogeneity of the MDCK cell line, which might reflect the cellular heterogeneity encountered in the renal cortical collecting duct. Our data also indicate that clonal selection will be required for future functional studies of the MDCK cells.  相似文献   

5.
Claudin-5 is a transmembrane protein reported to be primarily present in tight junctions of endothelia. Unexpectedly, we found expression of claudin-5 in HT-29/B6 cells, an epithelial cell line derived from human colon. Confocal microscopy showed colocalization of claudin-5 with occludin, indicating its presence in the tight junctions. By contrast, claudin-5 was absent in the human colonic cell line Caco-2 and in Madin-Darby canine kidney cells (MDCK sub-clones C7 and C11), an epithelial cell line derived from the collecting duct. To determine the contribution of claudin-5 to tight junctional permeability in cells of human origin, stable transfection of Caco-2 with FLAG-claudin-5 cDNA was performed. In addition, clone MDCK-C7 was transfected. Synthesis of the exogenous FLAG-claudin-5 was verified by Western blot analysis and confocal fluorescent imaging by employing FLAG-specific antibody. FLAG-claudin-5 was detected in transfected cells in colocalization with occludin, whereas cells transfected with the vector alone did not exhibit specific signals. Resistance measurements and mannitol fluxes after stable transfection with claudin-5 cDNA revealed a marked increase of barrier function in cells of low genuine transepithelial resistance (Caco-2). By contrast, no changes of barrier properties were detected in cells with a high transepithelial resistance (MDCK-C7) after stable transfection with claudin-5 cDNA. We conclude that claudin-5 is present in epithelial cells of colonic origin and that it contributes to some extent to the paracellular seal. Claudin-5 may thus be classified as a tight-junctional protein capable of contributing to the "sealing" of the tight junction.  相似文献   

6.
Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol‐anchored proteins (GPI‐APs) and soluble secretory proteins in Madin‐Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI‐APs in biosynthetic pathway but also for their apical recycling and basal‐to‐apical transcytosis routes. The apical distribution of the t‐SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical‐destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI‐APs in polarized MDCK cells.   相似文献   

7.
8.
9.
It is well established that endothelin‐1 (ET‐1) plays a role in differentiation and proliferation in a variety of cells such as fibroblasts and human melanoma cells via a receptor‐mediated mechanism. However, whether ET‐1 modulates ion channel activity in these cell types is still unknown. In this report, we recorded the voltage‐dependent outward K+ current in cultured B16 melanoma cells using the patch‐clamp technique. Biophysical and pharmacological properties of the K+ current, and the effect of ET‐1 on the K+ current were investigated. When cells were loaded with a Ca2+‐chelating agent (EGTA or BAPTA), the K+ current amplitude gradually increased with time after establishment of the whole cell configuration. Replacement of Ca2+ with Co2+ in the extracellular medium caused no significant modulation of the K+ current amplitude. Addition of BaCl2 or quinidine to the extracellular solution reduced the K+ current amplitude, whereas the K+ current was insensitive to tetraethylammonium. ET‐1 (10 nM) reversibly decreased the K+ current amplitude and accelerated the decay of the K+ current. The ET‐1‐induced inhibitory effect displayed no desensitization following repeated ET‐1 application. Pretreatment with pertussis toxin (PTX) or perfusion of cells with the protein kinase C (PKC) inhibitor H‐7 abolished the inhibitory effect of ET‐1 on the K+ current. We conclude that the outward K+ current recorded in murine B‐16 melanoma cells represents a Ca2+‐inactivated K+ current, and that the inhibitory effect of ET‐1 on the K+ current may reveal a novel mechanism to control the differentiation and proliferation of melanoma cells.  相似文献   

10.
Background information. AQPs (aquaporins) are water channel proteins that are expressed in almost all living things. In mammalians, 13 members of AQPs (AQP0–12) have been identified so far. AQP5 is known to be expressed mostly in the exocrine cells, including the salivary gland acinar cells. A naturally occurring point mutation (G308A, Gly103 > Asp103) was earlier found in the rat AQP5 gene [Murdiastuti, Purwanti, Karabasil, Li, Yao, Akamatsu, Kanamori and Hosoi (2006) Am. J. Physiol. 291 , G1081–G1088]; in this mutant, the rate of initial saliva secretion under stimulated and unstimulated conditions is less than that for the wt (wild‐type) animals. Results. Here the mutant molecule was characterized in detail. Using the Xenopus oocyte system, we demonstrated the mutant AQP5 to have water permeability almost the same as that of the wt molecule. Mutant and wt AQP5s, tagged with GFP (green fluorescent protein; GFP‐AQP5s) and expressed in polarized MDCK‐II (Madin—Darby canine kidney II) cells, first appeared in the vesicular structure(s) in the cytoplasm, and were translocated to the upper plasma membrane or apical membrane during cultivation, with the mutant GFP‐AQP5 being translocated less efficiently. Thapsigargin and H‐89 both induced translocation in vitro of either molecule, whereas colchicine inhibited this activity; the fraction of cells showing apical localization of mutant GFP‐AQP5 was less than that showing that of the wt molecule under any of the experimental conditions used. In the mutant SMG (submandibular gland) tissue, localization of AQP5 in the apical membrane of acinar cells was extremely reduced. Vesicular structures positive for AQP5 and present in the cytoplasm of the acinar cells were co‐localized with LAMP2 (lysosome‐associated membrane protein 2) or cathepsin D in the mutant gland, whereas such co‐localizations were very rare in the wt gland, suggesting that the mutant molecules largely entered lysosomes for degradation. Conclusion. Replacement of highly conserved hydrophobic Gly103 with strongly hydrophilic Asp103 in rat AQP5, though it did not affect water permeability, may possibly have resulted in less efficient membrane trafficking and increased lysosomal degradation, leading to its lower expression in the apical membrane of the acinar cells in the SMG.  相似文献   

11.
Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live‐cell fluorescence imaging techniques, in particular quasi‐total internal reflection fluorescence microscopy, to imaging fluorescent protein‐tagged Tβ RII and monitoring its secretion process. We observed punctuate‐like Tβ RII‐containing post‐Golgi vesicles formed in MCF7 cells. Single‐particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF‐β ligand, these receptor‐containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post‐Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII‐containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post‐Golgi vesicle‐trafficking and protein transportation. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Programmed cell death‐1 (PD‐1) is a newly characterized negative regulator of immune responses. The interaction of PD‐1 with its ligands (PD‐L1 and PD‐L2) inhibits T‐cell proliferation and cytokine production in young mice. Increased PD‐1 expression has been described during chronic infections, inducing chronic activation of the immune system to control it. As aging is associated with chronic immune activation, PD‐1 may contribute to age‐associated T‐cell dysfunction. Our data showed the following results in aged mice: (i) the number of PD‐1‐expressing T cells and the level of expression of PD‐Ls was increased on dendritic cell subsets and T cells; (ii) PD‐1+ T cells were exhausted effector memory T cells, as shown by their lower level of CD127, CD25 and CD28, as well as their limited proliferative and cytokine‐producing capacity; (iii) the expression of PD‐1 was up‐regulated after T‐cell receptor‐mediated activation of CD8+ T cells, but not of CD4+ T cells; (iv) blockade of the PD‐1/PD‐L1 pathway moderately improved the cytokine production of T cells from old mice but did not restore their proliferation; and (v) blockade of the PD‐1/PD‐L1 pathway did not restore function of PD‐1+ T cells; its effect appeared to be exclusively mediated by increased functionality of the PD‐1? T cells. Our data thus suggest that blockade of the PD‐1/PD‐L1 is not likely to be efficient at restoring exhausted T‐cell responses in aged hosts, although improving the responses of PD‐1? T cells may prove to be a helpful strategy in enhancing primary responses.  相似文献   

13.
Functionalized CdTe–CdS core–shell quantum dots (QDs) were synthesized in aqueous solution via water‐bathing combined hydrothermal method using L‐cysteine (L‐Cys) as a stabilizer. This method possesses both the advantages of water‐bathing and hydrothermal methods for preparing high‐quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The CdTe–CdS QDs with core–shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti‐CEACAM8 (CD67), the as‐prepared l ‐Cys capped CdTe–CdS QDs were successfully used as fluorescent probes for the direct immuno‐labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio‐labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
17.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
As the race toward higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport toward higher power efficiency has been urgently demanded. In this study, a hidden role of A‐site cations of PSCs in carrier transport, which has been largely neglected is unraveled, i.e., tuning the Fröhlich electron–phonon (e–ph) coupling of longitudinal optical (LO) phonon by A‐site cations. The key for steering Fröhlich polaron is to control the interaction strength and the number of proton (or lithium) coordination to halide ions. The coordination to I? alleviates electron–phonon scattering by either decreasing the Born effective charge or absorbing the LO motion of I. This novel principle discloses low electron–phonon coupling in several promising organic cations including hydroxyl–ammonium cation (NH3OH+), hydrazinium cation (NH3NH2+) and possibly Li+ solvating methylamine (Li+???NH2CH3), on a par with methyl–ammonium cations. A new perspective on the role of A‐site cations could help in improving power efficiency and accelerating the application of PSCs.  相似文献   

19.
《Chirality》2017,29(11):708-715
A liquid–liquid extraction resolution of 4‐chloro‐mandelic acid (4‐ClMA) was studied by using 2‐chloro‐N‐carbobenzyloxy‐L‐amino acid (2‐Cl‐Z‐AA) as a chiral extractant. Important factors affecting the extraction efficiency were investigated, including the type of chiral extractant, pH value of aqueous phase, initial concentration of chiral extractant in organic phase, initial concentration of 4‐ClMA in aqueous phase, and resolution temperature. It was observed that the concentration of (R)‐4‐ClMA was much higher than that of (S)‐4‐ClMA in organic phase due to a higher stability of the complex formed between (R)‐4‐ClMA and 2‐Cl‐Z‐AA. A separation factor (α) of 3.05 was obtained at 0.02 mol/L 2‐Cl‐Z‐Valine dissolved in dichloromethane, pH of 2.0, concentration of 4‐ClMA of 0.11 mmol/Land T of 296.7K.  相似文献   

20.
A new series of N‐(pyrimidin‐2‐yl)benzenesulfonamide derivatives, 3a – 3i and 4a – 4i , was synthesized from pyrimidin‐2‐amines, 2a – 2i , with the aim to explore their effects on in vitro growth of Entamoeba histolytica. The chemical structures of the compounds were elucidated by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, and ESI mass‐spectral data. In vitro anti‐amoebic activity was evaluated against HM1 : IMSS strain of Entamoeba histolytica. The IC50 values were calculated by using the double dilution method. The results were compared with the IC50 value of the standard drug ‘metronidazole’. The selected compounds were tested for their cytotoxic activities by cell‐viability assay using H9C2 cardiac myoblasts cell line, and the results indicated that all the compounds displayed remarkable >80% viabilities to a concentration of 100 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号