共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryan D. DeSantis Stephen W. Hallgren Thomas B. Lynch Jesse A. Burton Michael W. Palmer 《植被学杂志》2010,21(3):606-618
Questions: (1) How have the composition and structure of undisturbed upland Quercus forests changed over 50 years across a large region and moisture gradient; (2) What factors are associated with long‐term and broad‐scale changes in these forests? Location: Oklahoma, USA. Methods: We re‐sampled 30 forest stands originally sampled in the 1950s across a large geographical area and compared basal area, tree density, and sapling density between the sampling periods using paired t‐tests, CCA, and DCA. We examined vegetation dynamics in the context of drought indices compiled for the sample period. Results: Total and Quercus stellata basal area and tree density increased, but Q. stellata and Q. marilandica sapling density decreased. Juniperus virginiana and woody species richness increased for all measures. DCA indicated that re‐sampled stands generally changed from Q. stellata–Q. marilandica‐dominated forests to forests with greater woody species richness and more J. virginiana. Q. stellata remained a dominant tree species; otherwise, composition shifted towards mesophytic and invasive woody species. Measurements taken in the 1950s immediately followed a major drought; whereas subsequent decades were significantly moister. Conclusions: Fire exclusion and drought may have played an important role in driving changes towards lower dominance by Quercus, increased importance of mesophytic and invasive species, and greater woody species richness. These phenomena are similar to those found in Quercus‐dominated forests throughout the northern hemisphere. 相似文献
2.
红松阔叶混交林林隙光量子通量密度、气温和空气相对湿度的时空分布格局 总被引:2,自引:1,他引:2
以小兴安岭原始红松阔叶混交林林隙为研究对象,通过对林隙内光量子通量密度(PPFD)、气温和空气相对湿度进行连续观测,比较其间的时空分布格局.结果表明:晴天和阴天阔叶红松林林隙的PPFD日最大值均出现在11:00—13:00,晴天林隙内各个时段最大值出现位置不同,日最大值出现在林隙北侧林冠边缘处;而阴天各个时段最大值均处于林隙的中心.林隙内月平均PPFD 为6月最高、9月最低,极差7月最大.林隙内晴天气温的峰值出现在9:00—15:00,而阴天气温峰值在15:00—19:00,均位于林隙中心南8 m.5:00—9:00林隙各点阴天的气温都高于晴天,9:00—19:00则相反.月平均气温为6月最高、9月最低.晴天和阴天空气相对湿度的峰值均出现在5:00—9:00,日最大值在林隙西侧林冠边缘处,且阴天的相对湿度始终大于晴天.月平均相对湿度为7月最高、6月最低.晴天PPFD的异质性大于阴天,而气温和相对湿度的异质性则不明显.生长季内不同月份PPFD、气温和空气相对湿度的最大值所处位置不同.PPFD和气温的月均值在林隙中心及附近变化梯度较大,而相对湿度的月均值则在林隙边缘变化梯度较大. 相似文献
3.
Question: How have long-term herbivory and past land use impacted the population structure of Trillium catesbaei, a long-lived rhizomatous herb? Location: Western Great Smoky Mountains National Park, Tennessee, USA. Methods: We examined T. catesbaei populations at three sites: (1) Cades Cove (CC), an area of intensive historic land use that has been maintained as open fields and woodlots with a history of chronic deer herbivory, (2) Whiteoak Sink (WOS), a reference area with similar land-use history, geology, and soils that has succeeded to closed-canopy forest with relatively low levels of deer herbivory, and (3) Leadbetter Ridge (LBR), an area of primary forest that has never received significant anthropogenic disturbance. Trillium catesbaei is the most common Trillium species at the three study sites, but smaller in stature, shorter lived, and more of a habitat generalist. Results: Chronic herbivory in CC has created a highly-truncated age structure with no plants older than 9 years, while plant ages at the other sites were more evenly distributed. Compared to WOS, plants in CC were younger at a given height and more likely to flower when younger. Across all life stages, populations at CC contained 68 × fewer plants than WOS. The age structures of WOS and LBR were similar. Compared to published age estimates for other Trillium species, our results suggest that T. catesbaei is relatively short lived within the genus. Conclusions: Chronic herbivory had pronounced effects on the population structure of a perennial herb. Other long-lived herbaceous species may exhibit similar truncated age structures and flowering by younger and smaller plants. Habitat generalist species within a genus, such as T. catesbaei, that are able to reproduce more quickly may persist longer under chronic herbivory. However, chronic herbivory has likely caused the loss of herbaceous species from CC and may eventually cause the local extirpation of T. catesbaei populations. 相似文献
4.
Lívia S. Ferreira Mayla S. Rodrigues Attilio Converti Sunao Sato João Carlos M. Carvalho 《Biotechnology progress》2010,26(5):1271-1277
Arthrospira platensis was cultivated in tubular photobioreactor using different photosynthetic photon flux densities (PPFD) and protocols of (NH4)2SO4 fed‐batch supply. Results were evaluated by variance analysis selecting maximum cell concentration (Xm), cell productivity (Px), nitrogen‐to‐cell conversion factor (YX/N) and biomass, protein and lipid contents as responses. At PPFD of 120 and 240 μmol‐photons/m2 s, a parabolic profile of (NH4)2SO4 addition aiming at producing biomass with 7% nitrogen content ensured Xm values (14.1 and 12.2 g/L, respectively) comparable to those obtained with NaNO3. At PPFD of 240 μmol‐photons/m2 s, Px (1.69 g/Ld) was 36% higher, although the photosynthetic efficiency (3.0%) was less than one‐half that at PPFD of 120 μmol‐photons/m2 s. Biomass was shown to be constituted by about 35% proteins and 10% lipids, without any dependence on PPFD or kind of nitrogen source. These results highlight the possible use of (NH4)2SO4 as alternative, cheap nitrogen source for A. platensis cultivation in tubular photobioreactors. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
5.
Changes in the pools of carotenoids and protochlorophyll(ide) were investigated in etiolated cucumber cotyledons treated with
norflurazon (NF) and an experimental herbicide KC 6361 (KC). Both the NF- and the KC-treated tissues considerably accumulated
the colourless carotenes phytoene and phytofluene with a concomitant depletion of the coloured carotenoids lutein and β-carotene
in darkness. However, the profiles of changes in chlorophylls (Chls) and carotenoids were different for the two herbicides.
The plants were also influenced by the photosynthetic photon flux densities (PPFD's), with a more pronounced decline of Chl
under high PPFD than under low PPFD. The ratios of protochlorophyll (PChl)/protochlorophyllide (PChlide) were greatly altered
due to a decrease and an increase of PChl in the NF- and the KC-treated etiolated tissues, respectively, whereas the PChlide
content was not significantly influenced by the inhibitors. Large increase of PChls in the KC-treated tissues seems to derive
from the binding of accumulated geranylgeraniol (GG) equivalents, through carotenogenic inhibition, to PChlide. Therefore,
the alterations of PChl and PChlide occurring under disturbed carotenogenesis may suggest an interaction between the biosynthetic
pathways of Chls and carotenoids. In addition, the great proportion of PChl GG and PChl dihydro-GG in the KC-treated tissues
implies that PChl formation is regulated at the level of hydrogenation.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
Abstract. We studied plant diversity of the understory vascular vegetation in 40 yr-old plantations (immature stands) and old-growth forest stands on southwestern Vancouver Island, British Columbia, Canada. Site-specific comparisons using several indices of species diversity were made between: (1) immature stands segregated according to the canopy cover and dominant canopy tree species; and (2) immature and old-growth stands. There were no significant differences (P < 0.05) among immature stands in species richness (S) and the Shannon-Wiener index (H′), in relation to the canopy cover or in S, H′ and evenness (E) in relation to the dominant canopy tree species. Using the same indices, the plant diversity varied with edaphic conditions (represented by five site associations) and time (represented by two developmental stages). At both stand- and site levels, plant diversity increased with increasing soil moisture, from slightly dry to moist sites, and with increasing plant-available soil nitrogen in both immature and old-growth stands; and the plant diversity of immature stands across the sites studied was considerably lower than in old-growth stands, regardless of site association. The indices of plant diversity, floristic similarity indices, and species turnover rates indicated that the immature stands had their plant diversity at a minimum, but a drastic loss of diversity expected in the stem exclusion stage had not materialized. We attributed decline in plant diversity to the absence of old-growth structural features in immature stands. Several measures to foster the stand-level diversity were proposed. 相似文献
7.
8.
《Harmful algae》2017
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood. 相似文献
9.
Ski slope vegetation at Snoqualmie Pass in Washington State, USA, was surveyed in order to identify community types and to compare it with vegetation development patterns in Japan. Ski slopes in Japan, most of which were constructed after 1960, underwent heavy land recontouring, while those at Snoqualmie Pass were constructed before 1950 with less modification. Three points apply to Japanese ski slope vegetation and differentiate these slopes from those at Snoqualmie Pass: (i) grasslands of introduced species are widespread and persistent; (ii) unvegetated patches are uncommon; and (iii) wetland vegetation has developed. These differences are mainly derived from the intensity of human impact, history of the slope and its scale: namely, ski slopes in Washington are older and larger than those in Japan. Ski slope vegetation in Washington was primarily differentiated by a soil moisture gradient. The large size of Washington ski slopes permitted the inclusion and development of wetland habitats, whereas most ski slopes in Japan are constructed on ridges and do not contain wetlands. Most introduced species in Japan are eliminated soon after seeding. In contrast, the long-term management of ski slopes decreased soil erosion and/or unvegetated patches in Washington and created relatively permanent grasslands composed of introduced species. Tsuga heterophylla and Abies amabilis were found established on the ski slopes in Washington, whereas in Japan the pioneer tree species are shade-intolerant broadleaved species. These differences may be a result of the different disturbance histories of ski slopes in the two countries. In addition, along with the conifers, early successional forbs such as Anaphalis margaritacea and Epilobium angustifolium are well established on Washington ski slopes. Results show that disturbances created by ski slope development greatly affect the vegetation, even on older, less heavily impacted ski slopes. 相似文献
10.
The thylakoids of vegetative cells of the filamentous cyanobacterium, Anabaena cylindrica, are capable of oxygen-evolving photosynthesis and contain both Photosystems I and II (PSI and PSII). The heterocysts, cells specialized for nitrogen fixation, do not produce oxygen and lack Photosystem II activity, the major accessory pigments, and perhaps the chlorophyll a associated with PSII. Freeze-fracture replicas of vegetative cells and of heterocysts reveal differences in the structure of the thylakoids. A histogram of particle sizes on the expolasmic fracture face (E-face, EF) of vegetative cell thylakoids has two major peaks, at 75 and 100 Å. The corresponding histogram for heterocyst thylakoids lacks the 100 Å size class, but has a very large peak at about 55 Å with a shoulder at 75 Å. Histograms of protoplasmic fracture face (P-face, PF) particle diameters show single broad peaks, the mean diameter being 71 Å for vegetative cells and 64 Å for heterocysts. The thylakoids of both cell types have about 5600 particles/μm2 on the P-face. On the E-face, the density drops from 939 particles/μm2 on vegetative cell thylakoids to 715 particles/μm2 on heterocyst thylakoids. The data suggest that the 100 Å E-face particle of vegetative cell thylakoids is a PSII complex. The 55 Å EF particle of heterocysts may be part of the nitrogenase complex or a remnant of the PSII complex. The role of the 75 Å EF particle is unknown. Other functions localized on cyanobacterial thylakoids, such as respiration and hydrogenase activity, must be considered when interpreting the structure of these complex thylakoids. 相似文献
11.
12.
Kaisa Hakkila Taras Antal Ateeq Ur Rehman Juha Kurkela Hajime Wada Imre Vass Esa Tyystjärvi Taina Tyystjärvi 《BBA》2014
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required. 相似文献
13.
Antimycin A-sensitive cyclic electron flow (CEF) was discovered as cyclic phosphorylation by Arnon et al. (1954). Because of its sensitivity to antimycin A, PROTON GRADIENT REGULATION 5 (PGR5)/PGR5-like Photosynthetic Phenotype 1 (PGRL1)-dependent CEF has been considered identical to the CEF of Arnon et al. However, this conclusion still needs additional supportive evidence, mainly because of the absence of definitive methods of evaluating CEF activity. In this study, we revisited the classical method of monitoring cyclic phosphorylation in ruptured chloroplasts to characterize two Arabidopsis mutants: pgr5, which is defective in antimycin A-sensitive CEF, and chlororespiratory reduction 2-1 (crr2-1), which is defective in chloroplast NDH-dependent CEF. We observed a significant reduction in CEF-dependent pmf formation and consequently ATP synthesis in the pgr5 mutant, although LEF-dependent pmf formation and ATP synthesis were not impaired at photosynthetic photon flux densities below 130?μmol?m?2?s?1. In contrast, the contribution of chloroplast NDH complex to pmf formation and ATP synthesis was not significant. Antimycin A partially inhibited CEF-dependent pmf formation, although there may be further inhibition sites. Unlike in the observation in leaves, the proton conductivity of ATP synthase, monitored as gH+, was not enhanced in ruptured chloroplasts of the pgr5 mutant. 相似文献
14.
Nieves Fernández-García Enrique OlmosEnas Bardisi Jesús García-De la GarmaCarmen López-Berenguer José Salvador Rubio-Asensio 《Journal of plant physiology》2014
Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0 mM NaCl), and two levels of salinity; medium (75 mM NaCl) and high (150 mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75 mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na+ and Cl− in leaves and root. At 150 mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na+ and Cl− concentrations were lower than expected. Moreover, plants at 150 mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails. 相似文献
15.
Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza 总被引:1,自引:0,他引:1
Boldt K Pörs Y Haupt B Bitterlich M Kühn C Grimm B Franken P 《Journal of plant physiology》2011,168(11):1256-1263
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant. 相似文献
16.
Adeyemi O. Aremu Jiří Gruz Michaela Šubrtová Lucie Szüčová Karel Doležal Michael W. Bairu Jeffrey F. Finnie Johannes Van Staden 《Journal of plant physiology》2013
Merwilla plumbea (Lindl.) Speta is an important medicinal plant widely used in traditional medicine. We evaluated the effect of five cytokinins [benzyladenine (BA), 2-isopentenyladenine (2iP), meta-topolin (mT), meta-topolin riboside (mTR), and meta-methoxy-9-tetrahydropyran-2-yl-topolin (MemTTHP)] on the level of phenolic acids and antioxidant activity of M. plumbea during the tissue culture and acclimatization stages. Two cytokinins (mT and mTR) significantly improved the antioxidant activity of tissue culture plantlets while the control plantlets were better after acclimatization. Using UPLC–MS/MS, the levels of hydroxybenzoic and hydroxycinnamic acid derivatives (phenolic acids) varied significantly during tissue culture and acclimatization, depending on the cytokinin and plant part analyzed. Vanillic acid (24.9 μg g−1) detected in underground parts of tissue culture plants supplemented with BA was the most abundant phenolic acid detected. The current findings indicate that the phytochemicals together with the bioactivity during in vitro propagation of M. plumbea is influenced by the cytokinin type used and the stage of plant material collection. 相似文献
17.
Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance 总被引:1,自引:0,他引:1
Bocian A Kosmala A Rapacz M Jurczyk B Marczak Ł Zwierzykowski Z 《Journal of plant physiology》2011,168(11):1271-1279
Perennial ryegrass (Lolium perenne) is a high quality forage and turf grass mainly due to its excellent nutritive values and rapid establishment rate. However, this species has limited ability to perform in harsh winter climates. Though winter hardiness is a complex trait, it is commonly agreed that frost tolerance (FT) is its main component. Species growing in temperate regions can acquire FT through exposure to low, non-lethal temperatures, a phenomenon known as cold acclimation (CA). The research on molecular basis of FT has been performed on the model plants, but they are not well adapted to extreme winter climates. Thus, the mechanisms of cell response to low temperature in winter crops and agronomically important perennial grasses have yet to be revealed. Here, two L. perenne plants with contrasting levels of FT, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on analyses of leaf protein accumulation before and after 2, 8, 26 h, and 3, 5, 7, 14 and 21 days of CA, using a high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry (MS). Analyses of 580 protein profiles revealed a total of 42 (7.2%) spots that showed at a minimum of 1.5-fold differences in protein abundance, at a minimum of at one time point of CA between HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analyzed plants appeared most often on the 5th (18 proteins) and the 7th (19 proteins) day of CA. The proteins derived from 35 (83.3%) spots were successfully identified by the use of MS and chloroplast proteins were shown to be the major group selected as differentially accumulated during CA. The functions of the identified proteins and their probable influence on the level of FT in L. perenne are discussed. 相似文献
18.
Anna M. Jensen Magnus LöfEmile S. Gardiner 《Environmental and Experimental Botany》2011,71(3):367-375
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community. 相似文献
19.
20.
Rosa meillandina plants were used to study the effects of water deficit on photosynthesis and chlororespiration. Plants showed high tolerance to heat and high illumination in controlled conditions that ensured that there was no water deficit. However, when heat and high illumination were accompanied by low watering photosynthetic linear electron transport was down regulated, as indicated by the reduced photochemistry efficiency of PS II, which was associated with an increase in the non-photochemical quenching of fluorescence. In addition to the effects on the photosynthetic activity, changes were also observed in the plastidial NDH complex, PTOX and PGR5. In plants exposed to heat and high illumination without water deficit, the activities and amounts of the chlororespiration enzymes, NDH complex and PTOX, remained similar to the control and only increased in response to drought, high light and heat stress, applied together. In contrast, both the PS I activity and the amount of PGR5 polypeptide were higher in plants exposed to heat and high illumination without water deficit than in those with water deficit. The results indicated that in the conditions studied, the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when there is no water deficit, and another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PS II activity is inhibited by drought, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential. 相似文献