首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apical meristem damage (AMD) is a common result of herbivory. AMD can have dramatically variable effects on plant architecture and fitness, ranging from a total loss of reproductive capacity to overcompensation. We explored the influence of environmental stresses and meristem limitation on tolerance of AMD by applying the limiting resource model (LRM) of plant tolerance to 17 previously published studies and a new empirical study on Solidago altissima. In the S. altissima experiment, AMD released axillary meristems from apical dominance, and fertilizer addition enabled plants to take full advantage of the lateral branches. AMD caused a 58% reduction in seed production in nutrient-stressed plants but only a 6% reduction in seed production in fertilized plants. In 12 of the 18 studies reviewed, tolerance was greater in the high-resource (or low-competition) treatment; in two, tolerance was greater in the low-resource treatment; and in four, resource level did not affect tolerance of AMD. The results of 15 studies (83%) were consistent with LRM predictions. Overcompensation was observed in six studies, and it occurred only in the high-resource treatments in five of these studies, as would be expected from applying the LRM.  相似文献   

2.
The activation of dormant meristems following apical damage is an important mechanism for tolerance of herbivore damage, but its impact could vary with resource availability. Here, we examined central predictions of the limiting resource model (LRM), according to which high resource availability can support damage tolerance in plants with deterministic apical dominance, but will have limited or no effect in plants that are induced to increase branching by increased resource availability regardless of damage. We examined these predictions by studying the branching patterns of Medicago truncatula plants in response to both light and water availabilities and their effects on tolerance of apical damage. We used plants from environments that were predicted to select for different levels of apical dominance. Intact plants from the more productive and competitive population exhibited strong apical dominance and refrained from branching even under full light, whereas plants from the less productive and sparser population exhibited greater plasticity in apical dominance and readily branched under high water and light. In accordance with the LRM, these differences translated into differential responsiveness to apical damage: given abundant water, apical damage induced the activation of lateral meristems and increased pod and seed production in plants from the more productive environment, but not in plants from the less productive environment. These results suggest an adaptive association between deterministic inhibition of lateral meristems and compensatory ability, which supports the hypothesis that greater compensatory responsiveness to apical damage could be a derivative of adaptation to other environmental stresses, such as light competition.  相似文献   

3.
Herbivory imposes substantial selection pressure on plants, with the ability to regrow and maintain reproductive success a challenging but often necessary response by the plant. Despite the commonness of herbivore-induced damage, vast variation in tolerance ability exists among plants. Recent studies have suggested the role of endoreduplication (increasing ploidy within an individual) and the pentose phosphate pathway (a metabolic pathway that supports both primary and secondary metabolism) in contributing to the variation in tolerance ability among genotypes of Arabidopsis thaliana. We measured natural variation in apical meristem damage frequency, endoreduplication, and the sequence of G6PD1, an important gene in the pentose phosphate pathway, and related them to variation in tolerance of natural populations of A. thaliana over a portion of its native European range. Variation among populations in tolerance was significantly positively related to damage frequency, suggesting the potential for directional selection for tolerance ability as a product of damage frequency. We also discovered likely loss-of-function G6PD1 alleles in two populations, both of which displayed among the lowest levels of tolerance of all populations assessed. In addition, populations with the greatest increase in endopolyploidy also had the greatest ability to tolerate damage while populations with the greatest reduction in endopolyploidy had the lowest ability to tolerate damage. This study provides an assessment of variation in tolerance, damage frequency, G6PD1 sequence, and endopolyploidy in natural populations of A. thaliana, and also contributes to the growing body of research on the contributions of these specific molecular mechanisms to the tolerance response.  相似文献   

4.
Although it is widely acknowledged that a plant's tolerance of herbivore damage depends on resource availability in the plant's environment, there is no consensus on whether higher resource levels lead to greater or to lower tolerance. The prevailing model, the compensatory continuum hypothesis (CCH), predicts that tolerance of herbivory should be greater in high-resource or low-competition conditions. The main rival hypothesis, the growth rate model (GRM), makes the opposite prediction: tolerance of herbivory should be greater in more stressful conditions. The tolerance predictions of a recently introduced model, the limiting resource model (LRM), are more flexible and depend on the type of resource and herbivore under consideration. We reviewed 48 studies (from 40 published articles) of plant tolerance of leaf damage in conditions differing in levels of light, inorganic nutrients, water stress, or competition. The results of 31%, 48%, and 95% of the studies were consistent with the predictions of the CCH, GRM, and LRM, respectively. Thus, by considering which resource is primarily affected by herbivory and which resource is limiting a plant's fitness, the LRM offers a substantial advance in predicting how tolerance will be affected by environmental differences in resource availability.  相似文献   

5.
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.  相似文献   

6.
At the edge of a species range, plants may experience myriad microenvironmental gradients, which may differ and impose strong yet complex selective regimes. We explore these issues using the model organism Arabidopsis thaliana, a native of Europe that has naturalized in North America, which we planted in a common garden field plot in Knoxville, Tennessee and observed across two biotic gradients. We found evidence that directional selection favors increased plant size, consistent with hypotheses of plant responses to novel environments. However, selection differed among plants with fungus gnat larvae damage, aphid damage, and plants that escaped herbivory, evidence that the selective landscape is variable and complex even for quasi-natural field plots. We did not uncover evidence for resistance; however, our results suggest that tolerance of A. thaliana may play an important role for population establishment and persistence in the presence of herbivores in a novel environment. Our findings highlight the variation in one segment of the biotic selective landscape of field environments, as well as the importance of biotic interactions in shaping the success of recently established populations that may be a critical component of post-invasion evolution.  相似文献   

7.
8.
Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.  相似文献   

9.
Tolerance to herbivory—the ability of plants to maintain fitness despite herbivore damage—is expected to change during the life cycle of plants because the physiological mechanisms underlying tolerance to herbivory are linked to growth, and resource allocation to growth changes throughout ontogeny. We used the model plant Arabidopsis thaliana to test two hypotheses: that tolerance increases as plants grow, and that tolerance decreases at the onset of reproduction. We chose three accessions previously reported to vary for resistance to herbivory in order to explore whether tolerance and resistance are inversely related. Cabbage looper (Trichoplusia ni) larvae were allowed to feed on plants at either the four-leaf, six-leaf, or 1st-flower developmental stage until 50% of the leaf area was removed. Overall, we found a trend for increased tolerance with ontogenetic stage, but there were important differences among accessions in their response to herbivory at different stages. Tolerance did not decrease with the onset of flowering, nor did we find any correlation between resistance and tolerance levels. Three main plant traits correlated strongly with tolerance: stem mass, an earlier onset of reproduction and a longer fruiting period. This study suggests there may be considerable variation in ontogenetic patterns of tolerance in natural populations of A. thaliana, and warrants further investigations with more accessions or natural populations, and detailed measurements of traits purported to contribute to tolerance in our quest to understand the mechanisms of tolerance to herbivory.  相似文献   

10.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

11.
The evolutionary and environmental stability of character correlations has increasingly been the focus of ecological and quantitative genetic studies. Although the genetic stability of character correlations is a central assumption of quantitative genetic models of phenotypic evolution, theoretical considerations suggest that both the genetic and the phenotypic architecture should change in response to selection and to environmental heterogeneity. We investigate genetic (population) differences and plasticity to nutrient availability of the phenotypic architecture describing the whole-plant phenotype of Arabidopsis thaliana (Brassicaceae). We found significant genetic differences among early and late flowering ecotypes in the relationships between several traits, when a path-analytical model was used to estimate character correlations. Furthermore, we found significant plasticity of several path coefficients when nutrient levels were altered. A whole-plant analysis considering all paths in the model simultaneously confirmed that populations of A. thaliana are characterized by distinct phenotypic architectures, and that these are altered in different ways by environmental changes. We discuss the implications of these findings for our understanding of selective pressure on and response by multivariate phenotypes.  相似文献   

12.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

13.
How organisms adapt to different climate habitats is a key question in evolutionary ecology and biological conservation. Species distributions are often determined by climate suitability. Consequently, the anthropogenic impact on earth's climate is of key concern to conservation efforts because of our relatively poor understanding of the ability of populations to track and evolve to climate change. Here, we investigate the ability of Arabidopsis thaliana to occupy climate space by quantifying the extent to which different climate regimes are accessible to different A. thaliana genotypes using publicly available data from a large‐scale genotyping project and from a worldwide climate database. The genetic distance calculated from 149 single‐nucleotide polymorphisms (SNPs) among 60 lineages of A. thaliana was compared to the corresponding climate distance among collection localities calculated from nine different climatic factors. A. thaliana was found to be highly labile when adapting to novel climate space, suggesting that populations may experience few constraints when adapting to changing climates. Our results also provide evidence of a parallel or convergent evolution on the molecular level supporting recent generalizations regarding the genetics of adaptation.  相似文献   

14.
The ability of plants to recover from herbivore damage and maintain their fitness depends on physiological mechanisms that are affected by the availability of resources such as carbon and soil nutrients. In this study, we explored the effects of increased carbon and nutrient availability on the response of rapid cycling Brassica rapa to damage by the generalist herbivore, Trichoplusia ni (Noctuidae), in a greenhouse experiment. Using fruit mass as an estimate of plant fitness, we tested three physiological models, which predict either an increase or a decrease of tolerance to herbivory with increasing resource availability. We used leaf demography to examine some plausible mechanisms through which resource availability may affect tolerance. Our results contradict all models, and, rather, they support a more complicated view of the plasticity of resource uptake and allocation than the ones considered by the models tested. Fruit mass was negatively affected by herbivore damage only under elevated CO2, and only for certain harvest dates. Increased CO2 had no effect on the number of leaf births, but it decreased leaf longevity and the total number of leaves on a plant. Nutrient addition increased the number of leaf births, leaf longevity and the total number of leaves on a plant. We conclude that a shortening of the life span of the plants, brought about by elevated CO2, was responsible for a higher susceptibility of plants to herbivore damage under high CO2 concentration.  相似文献   

15.
Comparative analysis of genetic structure of northern natural populations of two Arabidopsis species with different degrees of panmixia was performed. The variability of 121 RAPD loci in seven populations of model plant A. thaliana possessing high degree of self fertility was studied together with 93 RAPD loci in population of cross-pollinating species A. lyrata ssp. petraea. The population of A. l. petraea demonstrated higher level of genetic variability (P 99% = 62.50%; H exp = 0.169) than the populations of A. thaliana, which is obviously connected with biological features of reproduction of the species. A significant level of genetic variability (P 99% = 42.27%; H exp = 0.126) was revealed in populations of A. thaliana, which is not typical for self-pollinating plant species. The high population polymorphism of A. thaliana in the northern part of its range may be connected with adverse environmental conditions. The genetic distances between populations of the species studied (average D N = 0.494) confirm close relatedness between A. thaliana and A. l. petraea.  相似文献   

16.
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low‐virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high‐virulent parasites would be attained through shortening of the pre‐reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low‐virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host–virus combinations and, at odds with theoretical predictions, is linked to longer pre‐reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant–virus interactions.  相似文献   

17.
Banta JA  Pigliucci M 《Heredity》2005,94(2):229-236
To examine the role of gibberellin hormones (GAs) in tolerance to apical meristem damage (AMD), we characterized the reaction norms of several GA-deficient and insensitive mutants of Arabidopsis thaliana in response to AMD and compared them to those of the wild type, Landsberg, from which they were derived. We included 'natural' genotypes of A. thaliana--accessions with shorter lab histories--in order to evaluate how representative Landsberg is of other genotypes. The GA mutations did not alter the level of tolerance to AMD, which was consistent with equal compensation for all genotypes. Generally, the reaction norms to AMD did not differ among the GA mutants themselves, or between the GA mutants and Landsberg. The GA mutations did affect the overall phenotypes of the plants, but these effects were not simply related to whether the mutation was early or late in the biochemical pathways. The GA-insensitive mutant was phenotypically different from the GA-deficient mutants and from Landsberg. The natural populations differed significantly from Landsberg, particularly in attributes related to size and inflorescence production, one more example of the need for researchers to be careful when generalizing the results of studies based upon laboratory strains. Our results indicate that early-flowering genotypes of A. thaliana can be remarkably tolerant to AMD, and that GA deficiency/insensitivity does not hinder tolerance to AMD, at least in this genetic background. Moreover, we confirm that mutations at regulatory loci can have noncatastrophic effects on fitness, as recently found by other investigators.  相似文献   

18.
We tested whether differences in ploidy level and previous exposure to herbivory can affect plant tolerance to herbivory. We conducted a common garden experiment with 12 populations of two ploidy levels of the perennial herb Cardamine pratensis (five populations of tetraploid ssp. pratensis and seven populations of octoploid ssp. paludosa). Earlier studies have shown that attack rates by the main herbivore, the orange tip butterfly Anthocharis cardamines, are lower in populations of octoploids than in populations of tetraploids, and vary among populations. In the common garden experiment, a combination of natural and artificial damage significantly reduced seed and flower production. We measured tolerance based on four plant-performance metrics: survival, growth, seed production and clonal reproduction. For three of these measurements, tolerance of damage did not differ between ploidy levels. For clonal reproduction, the octoploids had a higher tolerance than the tetraploids, although they experience lower herbivore attack rates in natural populations. Populations from sites with high levels of herbivory had higher tolerance, measured by seed production, than populations with low levels of herbivory. We did not detect any significant costs of tolerance. We conclude that high intensity of herbivory has selected for high tolerance measured by seed production in C. pratensis.  相似文献   

19.
Many facets of plant form and function are reflected in general cross‐taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade‐offs.  相似文献   

20.
Phenotypic variation in ecologically important traits may vary at large and small geographic scales, and may be shaped by natural selection. Here our explicit aim is to evaluate phenotypic differentiation among local populations and examine its relationship with ecological edaphic and climatic features that could lead to local adaptation. We characterized six populations of the model plant Arabidopsis thaliana over 3 years in the field in its native range. At each site, we measured edaphic conditions and aboveground and belowground phenotypes. In addition, we grew plants from the six characterized populations in a common greenhouse along with an additional fifteen populations from the Iberian Peninsula to examine evolutionary and ecological differentiation among populations, and relationships between geographic and ecological distance to phenotypic differences among populations. Significant differences in aboveground and belowground traits, population density, and micro- and macro-nutrient soil concentrations were found among the field populations. In particular, root architectural traits differed significantly among field populations. Complex patterns of ecological differences among population and plant phenotypes emerged when examining edaphic conditions in the Extremadura region, and geographic and climate variables at a broader scale of the Iberian Peninsula. We report levels of phenotypic variation at the local scale comparable to those found at broad geographic scales and report that local edaphic conditions contribute to population-level phenotypic variation in root and shoot traits. To our knowledge, these are the first reports of among population root architectural variation from natural field populations for this model organism. We demonstrate how ecological features, such as soil nutrients, can be associated with the phenotypic variation of A. thaliana measured in natural populations and may contribute to adaptive differentiation at a local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号