首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The rapid changes in altitude, and associated habitat, of mountain ecosystems make them ideal natural laboratories for testing the effect of environmental heterogeneity on species assemblage. Our understanding of the sensitivity of Australian reptiles to elevational clines is limited. We examined lizard distribution across three elevation zones (montane, subalpine and alpine), spanning from 900 to 1840 m above sea level, in the Australian alps. We aimed to examine how elevation influences species diversity and abundance, and ectoparasite load, and whether species alter their habitat use amongst different elevational zones. Active searches were conducted across the elevation zones to identify lizard community structure (at least 16 species) across elevational zones, along with skink habitat preferences and the ectoparasite load. Skink diversity and abundance were negatively correlated with increased elevation. The alpine zone had significantly lower diversity and abundance of skinks. Habitat use differed amongst both elevations and species. Ectoparasite prevalence was also significantly diminished in the alpine zone. Ectoparasites only infected a subset of the skink community, with ectoparasite load increasing as the active season progressed. This study provides evidence of the complex interplay between elevation and species diversity, as well as the differences in ectoparasite pressure along elevational gradients in the Australian alps.  相似文献   

5.
6.
Climate change could modify the biogeography of many forest species. Elevational gradients have been documented as strategic sites to better understand tree growth response to regional climate variables. Pinus cooperi Blanco is one of the most important species in Northern Mexico. However, little is known concerning effects of climate responses on growth of this species. We used tree data records to compare the influence of precipitation and temperature on radial growth among P. cooperi populations across a mountain landscape at elevation gradient. Correlation and regression analysis of the regional growth–climate relationships showed that radial growth was correlated with previous winter conditions at most sites along the gradient. Wet and cold winters were positively associated with radial growth. Although our results showed significant climate influences on tree radial growth, other site factors also may have affected growth–climate responses. The results support the idea that climate change influences P. cooperi growth.  相似文献   

7.
Climate change may influence the phenology of organisms unequally across trophic levels and thus lead to phenological mismatches between predators and prey. In cases where prey availability peaks before reproducing predators reach maximal prey demand, any negative fitness consequences would selectively favor resynchronization by earlier starts of the reproductive activities of the predators. At a study site in northeast Greenland, over a period of 17 years, the median emergence of the invertebrate prey of Sanderling Calidris alba advanced with 1.27 days per year. Yet, over the same period Sanderling did not advance hatching date. Thus, Sanderlings increasingly hatched after their prey was maximally abundant. Surprisingly, the phenological mismatches did not affect chick growth, but the interaction of the annual width and height of the peak in food abundance did. Chicks grew especially better in years when the food peak was broad. Sanderling clutches were most likely to be depredated early in the season, which should delay reproduction. We propose that high early clutch predation may favor a later reproductive timing. Additionally, our data suggest that in most years food was still abundant after the median date of emergence, which may explain why Sanderlings did not advance breeding along with the advances in arthropod phenology.  相似文献   

8.
Forests of an elevational transect in the central Himalayan region were studied regarding their tree species composition and structural features. In spite of many differences in compositional and structural features in different forest stands, the arrangement of stands in the ordinations based separately on species composition and structural features exhibit many similarities. Disturbances such as landslides and forest fires play the most important role in the distributor of particular species.  相似文献   

9.
Mycorrhizal fungi are crucial for the ecological success of land plants, providing their hosts with nutrients in exchange for organic C. However, not all plants are mycorrhizal, especially ferns, of which about one-third of the species lack this symbiosis. Because the mycorrhizal status is evolutionarily ancestral, this lack of mycorrhizae must have ecological advantages, but what these advantages are and how they affect the competitive ability of non-mycorrhizal plants under natural conditions is currently unknown. To address this uncertainty, we studied terrestrial fern assemblages and species abundances as well as their mycorrhization status, leaf nutrient concentration and relative annual growth along an elevational gradient in the Ecuadorian Andes (500–4,000 m). We surveyed the mycorrhizal status of 375 root samples belonging to 85 species, and found mycorrhizae in 89 % of the samples. The degree of mycorrhization decreased with elevation but was unrelated to soil nutrients. Species with mycorrhizae were significantly more abundant than non-mycorrhizal species, but non-mycorrhizal species had significantly higher relative growth and concentrations of leaf N, P, Mg, and Ca. Our study thus shows that despite lower abundances, non-mycorrhizal fern species did not appear to be limited in their growth or nutrient supply relative to mycorrhizal ones. As a basis for future studies, we hypothesize that non-mycorrhizal fern species may be favoured in special microhabitats of the forest understory with high soil nutrient or water availability, or that the ecological benefit of mycorrhizae is not related to nutrient uptake but rather to, for example, pathogen resistance.  相似文献   

10.
Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST) and phenotypic differentiation (PST) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients.  相似文献   

11.
Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970–2000) and future (2081–2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081–2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.  相似文献   

12.
Does competition influence patterns of coexistence between closely related taxa? Here we address this question by analyzing patterns of range overlap between related species of birds (‘sister pairs’) co‐occurring on a tropical elevational gradient. We explicitly contrast the behavioral dimension of interspecific competition (interference competition) with similarity in resource acquisition traits (exploitative competition). Specifically, we ask whether elevational range overlap in 118 sister pairs that live along the Manu Transect in southeastern Peru is predicted by proxies for competition (intraspecific territorial behavior) or niche divergence (beak divergence and divergence times, an estimate of evolutionary age). We find that close relatives that defend year‐round territories tend to live in non‐overlapping elevational distributions, while close relatives that do not defend territories tend to broadly overlap in elevational distribution. In contrast, neither beak divergence nor evolutionary age was associated with patterns of range limitation. We interpret these findings as evidence that behavioral interactions – particularly direct territorial aggression – can be important in setting elevational range limits and preventing coexistence of closely related species, though this depends upon the extent to which intraspecific territorial behavior can be extended to territorial interactions between species. Our results suggest that interference competition can be an important driver of species range limits in diverse assemblages, and thus highlight the importance of considering behavioral dimensions of the niche in macroecological studies.  相似文献   

13.
ABSTRACT.   Populations of Warbling Vireos ( Vireo gilvus ) are declining in California, apparently due to low reproductive success. From 1989–2002, I studied the nest-site selection and reproductive success of Warbling Vireos across an elevational gradient in the southern Sierra Nevada. Warbling Vireos regularly nested in upland coniferous forests with few or no deciduous trees, and tree species used by nesting vireos included five species of conifers and four species of deciduous trees. Overall, hardwoods were used more than expected based on their availability, but 69% of all nests were in conifers. Hardwood trees were found only in low and mid-elevation ponderosa pine ( Pinus ponderosa ) and mixed-conifer sites. In low-elevation ponderosa pine habitat, 87% of nests were in hardwoods, with 67% in California black oaks ( Quercus kelloggii ), a species that typically occupies upland sites. In mixed-conifer sites where reproductive success was high, 65% of nests were in incense cedar ( Calocedrus decurrens ) and California black oak was the next most commonly used species. Because fire suppression has likely increased numbers of shade-tolerant tree species like incense cedar, shade-intolerant species like black oaks may have been more important as a nest substrate for vireos in the past. Only conifers were used as nesting substrates at higher elevations. Nest success was greater for Warbling Vireos that nested in tall trees in areas with high basal area. My results suggest that Warbling Vireos in the Sierra Nevada would benefit from management activities that encourage retention and recruitment of California black oaks at lower elevations, and development of stands with large trees, dense foliage, and semi-open canopy throughout their elevation range.  相似文献   

14.
The recent Europe-wide increase in wild boarSus scrofa, Linnaeus, 1758 abundance is undoubtedly due to many different factors, the relative importance of which differs from region to region. In Aragón (northeastern Spain), wild boar enlarged its distribution area eight times in the 1990s as compared with the century before, occupying the whole region. We studied wild boar abundance along an environmental gradient in Aragón to determine which factors are most responsible for its variation. Relative abundance of wild boars was estimated by catch-effort methods in 134 hunting estates (sampling units) for 5 consecutive hunting seasons. To characterise the environmental conditions, we quantified landscape composition and structure, topographical factors and climatic factors. Hunting pressure indices were also calculated for our sampling units. The average wild boar catch per hunting activity and per 100 km2 ranged from 0.72 to 16.31. Our results suggest thatwild boar abundances are affected by landscape structure, mainly by landscape diversity. In addition, lowland arid agrosystems (characterized by high temperatures and open juniper woodlands with little food availability) constrain the abundance of wild boar populations in spite of their wide plasticity to colonize new habitats.  相似文献   

15.

Aims

This study explores soil nutrient cycling processes and microbial properties for two contrasting vegetation types along an elevational gradient in subarctic tundra to improve our understanding of how temperature influences nutrient availability in an ecosystem predicted to be sensitive to global warming.

Methods

We measured total amino acid (Amino-N), mineral nitrogen (N) and phosphorus (P) concentrations, in situ net N and P mineralization, net Amino-N consumption, and microbial biomass C, N and P in both heath and meadow soils across an elevational gradient near Abisko, Sweden.

Results

For the meadow, NH4 + concentrations and net N mineralization were highest at high elevations and microbial properties showed variable responses; these variables were largely unresponsive to elevation for the heath. Amino-N concentrations sometimes showed a tendency to increase with elevation and net Amino-N consumption was often unresponsive to elevation. Overall, PO4-P concentrations decreased with elevation and net P immobilization mostly occurred at lower elevations; these effects were strongest for the heath.

Conclusions

Our results reveal that elevation-associated changes in temperature can have contrasting effects on the cycling of N and P in subarctic soils, and that the strength and direction of these effects depend strongly on dominant vegetation type.  相似文献   

16.
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species.  相似文献   

17.
It has been suggested that bottom–up and top–down forces interactively control food web dynamics. While top–down effects would increase with resource availability to plants, bottom–up effects would be stronger under low predator abundance. These predictions, however, have rarely been tested at contrasting sites while keeping the dominant plant species unchanged. Furthermore, few studies have factorially manipulated both types of forces in forest communities. For two years, we evaluated the effects of fertiliser (NPK) addition and bird exclusion on tree growth, leaf traits, insect abundance, and folivory rates in a dry/warm and a wet/cold Nothofagus pumilio forest in Patagonia, Argentina. Overall, we found no interaction between nutrient supply and bird predation, although the strength of bottom–up and top–down forces differed markedly between forest sites. Treatment effects were generally weak in the wet forest, where tree growth rates and insect herbivory were low relative to the dry forest. In the dry forest, fertilisation increased sapling growth, insect abundance and folivory, whereas bird exclusion increased leaf damage and reduced tree growth. In the wet forest, fertilisation enhanced leaf nutrient contents and folivore abundance but not sapling growth, while bird exclusion had little impact on insects or trees. These results imply that factors other than nutrients and birds were important in controlling tree growth and folivore activity in the wet forest. While treatment effect sizes varied widely among feeding guilds, in general, nutrient effects on folivores were stronger than predator effects. We conclude that, within the time‐frame of this study, tree growth and herbivory were additively affected by soil nutrients and predator presence, as bird exclusion effects did not change with elevated folivore activity on fertilised trees. We also show that both top–down and bottom–up cascades were weaker in a forest site characterised by slow‐growing juvenile trees subjected to low folivore pressure.  相似文献   

18.
《Journal of Asia》2021,24(4):1244-1250
Elevational gradients in mountains show rapid changes in environmental conditions across a small geographic extent. This results in habitat specialization in animal communities which results in changes in species composition across space. We explore changes in species and functional group composition of ants using the first ever data on the distribution of ants across an elevational gradient in the Eastern Himalaya. Ants were sampled from 600 to 2400 m elevations at 200 m intervals using Winklers and pitfall traps. The sampling yielded 166 species of ants from 10,560 individuals, which were then classified into functional groups. We used redundancy analysis to test the effects of environmental factors (temperature, leaflitter volume, understory vegetation) and spatial predictors on species as well as functional group composition of communities at different elevations. Our results show that species diversity within all functional groups decreases towards higher elevations. The functional group composition of ant communities shows a gradient from high evenness at low elevations to being dominated by opportunist species at higher elevations. Redundancy analyses shows that most of the variation in species as well as functional group composition is driven by spatially structured environmental variation. This is most likely due to the high correlation between temperature and elevation. In summary, the changes in species as well as functional group composition are likely driven by a gradient in climate across the elevation gradient.  相似文献   

19.
Fire is an important determinant of many aspects of savanna ecosystem structure and function. However, relatively little is known about the effects of fire on faunal biodiversity in savannas. We conducted a short‐term study to examine the effects of a replicated experimental burn on bird diversity and abundance in savanna habitat of central Kenya. Twenty‐two months after the burn, Shannon diversity of birds was 32% higher on plots that had been burned compared with paired control plots. We observed no significant effects of burning on total bird abundance or species richness. Several families of birds were found only on plots that had been burned; one species, the rattling cisticola (Cisticola chiniana), was found only on unburned plots. Shrub canopy area was negatively correlated with bird diversity on each plot, and highly correlated with grass height and the abundance of orthopterans. Our results suggest that the highest landscape‐level bird diversity might be obtained through a mosaic of burned and unburned patches. This is also most likely to approximate the historical state of bird diversity in this habitat, because patchy fires have been an important natural disturbance in tropical ecosystems for millennia.  相似文献   

20.
Environmental conditions and plant genotype may influence insect herbivory along elevational gradients. Plant damage would decrease with elevation as temperature declines to suboptimal levels for insects. However, host plants at higher elevations may exhibit traits that either reduce or enhance leaf quality to insects, with uncertain net effects on herbivory. We examined folivory, insect abundance and leaf traits along six replicated elevational ranges in Nothofagus pumilio forests of the northern Patagonian Andes, Argentina. We also conducted a reciprocal transplant experiment between low- and high-elevation sites to test the extent of environmental and plant genetic control on insect abundance and folivory. We found that insect abundance, leaf size and specific leaf area decreased, whereas foliar phosphorous content increased, from low-, through mid- to high-elevation sites. Path analysis indicated that changes in both insect abundance and leaf traits were important in reducing folivory with increasing elevation and decreasing mean temperature. At both planting sites, plants from a low-elevation origin experienced higher damage and supported greater insect loads than plants from a high-elevation origin. The differences in leaf damage between sites were twofold larger than those between plant origins, suggesting that local environment was more important than host genotype in explaining folivory patterns. Different folivore guilds exhibited qualitatively similar responses to elevation. Our results suggest an increase in insect folivory on high-elevation N. pumilio forests under future climate warming scenarios. However, in the short-term, folivory increases might be smaller than expected from insect abundance only because at high elevations herbivores would encounter more resistant tree genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号