首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global patterns of intraspecific leaf trait responses to elevation   总被引:1,自引:0,他引:1  
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta‐analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho‐ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ13C). We found LMA, Narea, Nmass and δ13C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ13C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross‐species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.  相似文献   

2.
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf‐level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs, and then explored the abiotic (i.e. month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait‐based approach to improve modeling of carbon and water exchange in tropical forests.  相似文献   

3.
Question: Is there any generality in terms of leaf trait correlations and the multiple role of leaf traits (response to and/or effect on) during secondary succession? Location: A secondary successional sere was sampled at four different ages since abandonment from several years to nearly 150 years on the Loess Plateau of northwestern China. Method: Specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen (Nmass, Narea), leaf phosphorus (Pmass, Parea) and leaf dry matter content (LDMC) were measured for all species recorded in the successional sere. Above‐ground net primary productivity (ANPP) and specific rate of litter mass loss (SRLML) were measured as surrogates for ecosystem properties. Soil total carbon (C) and nitrogen (N) were measured in each stage. Leaf traits were related to ecosystem properties and soil nutrient gradients, respectively. Results: LMA is correlated with Narea and Parea' and negatively with Nmass. Correlation between Narea and Parea was higher than between Nmass and Pmass. At the community level, field age, community hierarchy and their interaction explain 64.4 ‐ 93.5% of the variation in leaf traits. At the species level, field age explains 22.4 ‐ 45.5% of the variation in leaf traits (excl. Parea) while plant functional group has a significant effect only for Nmass. LDMC is correlated with ANPP and negatively with SRLML; Pmass is correlated with SRLML. Conclusions: Mean values of LMA, Nmass and Narea are close to the worldwide means, suggesting that large‐scale climate has a profound effect on leaf mass and leaf nitrogen allocation, while environmental gradients represented by succession have little influence on leaf‐trait values. Correlations between leaf traits, such as LMA‐Narea, LMA‐Parea and LMA‐Nmass shown in previous studies, are confirmed here. Although none of the leaf traits is proved to be both a response trait and an effect trait independent of time scale and community hierarchy, mass‐based leaf N is likely a sensitive response trait to soil C and N gradients. In addition, LDMC can be a marker for ANPP and SRLML, while mass‐based leaf P can be a marker for SRLML.  相似文献   

4.
Morphological (dry mass, DM; surface area, LA; leaf mass per area, LMA), anatomical (leaf thickness, L), phenological (leaf life span, LL), and physiological (net photosynthetic rate, P N) leaf traits of the evergreen species co-occurring in the Mediterranean maquis developing at Castelporziano (Rome) were tested. The correlation analysis indicated that LMA variation was tightly associated with LL variations: Cistus incanus and Arbutus unedo had a short LL (4±1, summer leaves, and 11±1 months, respectively) and low LMA (153±19 g m−2) values, Quercus ilex, Phillyrea latifolia, and Pistacia lentiscus high LMA (204±7 g m−2) and long LL (22±3 months), Erica arborea, Erica multiflora, and Rosmarinus officinalis a short LL (9±2 months) and an either high (213±29 g m−2, R. officinalis and E. multiflora) or low (115±17 g m−2, E. arborea) LMA. LMA values were significantly (p≤0.05) correlated with P N (r≥0.68). In the tested species, LMA increased in response to the decrease of the total rainfall during the leaf expansion period. LMA variation was due to the unequal variation of DM and LA in the considered species. LMA is thus a good indicator of evergreen maquis species capability to respond to climate change, in particular to total rainfall decrease in the Mediterranean basin.  相似文献   

5.
The natural ratio of stable carbon isotopes (δ13C) was compared to leaf structural and chemical characteristics in evergreen conifers in the north-central Rockies, United States. We sought a general model that would explain variation in δ13C across altitudinal gradients. Because variation in δ13C is attributed to the shifts between supply and demand for carbon dioxide within the leaf, we measured structural and chemical variables related to supply and demand. We measured stomatal density, which is related to CO2 supply to the chloroplasts, and leaf nitrogen content, which is related to CO2 demand. Leaf mass per area was measured as an intermediate between supply and demand. Models were tested on four evergreen conifers: Pseudotsuga menziesii, Abies lasiocarpa, Picea engelmannii, and Pinus contorta, which were sampled across 1800 m of altitude. We found significant variation among species in the rate of δ13C increase with altitude, ranging from 0.91‰ km–1 for A. lasiocarpa to 2.68‰ km–1 for Pinus contorta. Leaf structure and chemistry also varied with altitude: stomatal density decreased, leaf mass per area increased, but leaf nitrogen content (per unit area) was constant. The regressions on altitude were particularly robust in Pinus contorta. Variables were derived to describe the balance between supply and demand; these variables were stomata per gram of nitrogen and stomata per gram of leaf mass. Both derived variables should be positively related to internal CO2 supply and thus negatively related to δ13C. As expected, both derived variables were negatively correlated with δ13C. In fact, the regression on stomatal density per gram was the best fit in the study (r 2=0.72, P<0.0001); however, the relationships were species specific. The only general relationship observed was between δ13C and LMA: δ13C (‰)=–32.972+ 0.0173×LMA (r 2=0.45, P<0.0001). We conclude that species specificity of the isotopic shift indicates that evergreen conifers demonstrate varying degrees of functional plasticity across environmental gradients, while the observed convergence of δ13C with LMA suggests that internal resistance may be the key to understanding inter-specific isotopic variation across altitude. Received: 1 June 1999 / Accepted: 2 November 1999  相似文献   

6.
In order to explore ontogenetic variation in leaf-level physiological traits of Betula pendula trees, we measured changes in mass- (A mass) and area-based (A area) net photosynthesis under light-saturated conditions, mass- (RSmass) and area-based (RSarea) leaf respiration, relative growth rate, leaf mass per area (LMA), total nonstructural carbohydrates (TNC), and macro- and micronutrient concentrations. Expanding leaves maintained high rates of A area, but due to high growth respiration rates, net CO2 fixation occurred only at irradiances >200 μmol photons m–2 s–1. We found that full structural leaf development is not a necessary prerequisite for maintaining positive CO2 balance in young birch leaves. Maximum rates of A area were realized in late June and early July, whereas the highest values of A mass occurred in May and steadily declined thereafter. The maintenance respiration rate averaged ≈8 nmol CO2 g–1 s–1, whereas growth respiration varied between 0 and 65 nmol CO2 g–1 s–1. After reaching its lowest point in mid-June, leaf respiration increased gradually until the end of the growing season. Mass and area-based dark respiration were significantly positively correlated with LMA at stages of leaf maturity, and senescence. Concentrations of P and K decreased during leaf development and stabilized or increased during maturity, and concentrations of immobile elements such as Ca, Mn and B increased throughout the growing season. Identification of interrelations between leaf development, CO2 exchange, TNC and leaf nutrients allowed us to define factors related to ontogenetic variation in leaf-level physiological traits and can be helpful in establishing periods appropriate for sampling birch leaves for diagnostic purposes such as assessment of plant and site productivity or effects of biotic or abiotic factors. Received: 29 December 1998 / Accepted: 26 July 1999  相似文献   

7.
Community structure and leaf traits are important elements of terrestrial ecosystems. Changes of community structure and leaf traits are of particular use in the study of the influence of climate change on terrestrial ecosystems. Patterns of community structure (including species richness, above- and below-ground biomass) and leaf traits (including leaf mass per area (LMA), nitrogen content both on mass and area bases (N mass and N area), and foliar δ13C) from 19 grassland plots along an altitudinal transect at Hongchiba in Chongqing, China, were analyzed. Species richness along the altitudinal transect had a hump-shaped pattern. Above-ground biomass had a quadratic decrease along the altitudinal gradient whereas below-ground biomass had the opposite pattern. Change of above-ground biomass of various taxonomic groups with altitude was also studied. Poaceae showed strong negative relationships and Asteraceae showed a hump-shaped relationship with increase of altitude. Five common species of the grassland, Trifolium pratense, Geranium wilfordii, Aster tataricus, Leontopodium leontopodioides, and Spiraea prunifolia, were particularly studied for variation of leaf traits along the altitudinal gradient. Averaged for all species, LMA, N area and foliar δ13C had positive correlations with altitude. N mass did not change significantly as altitude increased. LMA and N area showed significant positive relationships with foliar δ13C. The adaptive features of leaf traits among different species were not consistent. The study highlights specific adaptation patterns in relation to altitude for different plant species, provides further insights into adaptive trends of community structure and leaf traits in a specific ecological region filling a gap in the definition of global patterns, and adds to the understanding of how adaptive patterns of plants may respond to global climate change.  相似文献   

8.

Background and aims

Soil factors are driving forces that influence spatial distribution and functional traits of plant species. We test whether two anchor morphological traits—leaf mass per area (LMA) and leaf dry matter content (LDMC)—are significantly related to a broad range of leaf nutrient concentrations in Mediterranean woody plant species. We also explore the main environmental filters (light availability, soil moisture and soil nutrients) that determine the patterns of these functional traits in a forest stand.

Methods

Four morphological and 19 chemical leaf traits (macronutrients and trace elements and δ13C and δ15N signatures) were analysed in 17 woody plant species. Community-weighted leaf traits were calculated for 57 plots within the forest. Links between LMA, LDMC and other leaf traits were analysed at the species and the community level using standardised major axis (SMA) regressions

Results

LMA and LDMC were significantly related to many leaf nutrient concentrations, but only when using abundance-weighted values at community level. Among-traits links were much weaker for the cross-species analysis. Nitrogen isotopic signatures were useful to understand different resource-use strategies. Community-weighted LMA and LDMC were negatively related to light availability, contrary to what was expected.

Conclusion

Community leaf traits have parallel shifts along the environmental factors that determine the community assembly, even though they are weakly related across individual taxa. Light availability is the main environmental factor determining this convergence of the community leaf traits.  相似文献   

9.
Andrew G. Peterson 《Oecologia》1999,118(2):144-150
The relationship between photosynthetic carbon assimilation (A max) and leaf nitrogen content (N leaf) can be expressed on either a leaf area basis (A area vs N area) or a leaf mass basis (A mass vs N mass). Dimensional analysis shows that the units for the slope of this relationship are the same for both expressions (μmol [CO2] g−1 [N] s−1). Thus the slope measures the change in CO2 assimilation per gram of nitrogen, independent of leaf mass or leaf area. Although they have the same units, large differences between the area and mass-based slopes have been observed over a broad range of taxonomically diverse species. Some authors have claimed that regardless of these differences, the fundamental nature of the A max-N leaf relationship is independent of the units of expression. In contrast, other authors have claimed that the area-based A max-N leaf relationship is fundamentally different from the mass-based relationship because of interactions between A max, N leaf, and leaf mass per area (LMA, g [leaf] m−2 [leaf]). In this study we consider the mathematical relationships involved in the transformation from mass- to area-based expressions (and vice versa), and the implications this transformation has for the slope of the A max-N leaf relationship. We then show that the slope of the relationship is independent of the units of expression when the effect of LMA is controlled statistically using a multiple regression. The validity of this hypothesis is demonstrated using 13 taxonomically and functionally diverse C3 species. This analysis shows that the slope of the A max-N leaf relationship is similar for the mass- and area-based expressions and that significant errors in the estimate of the slope can arise when the effect of LMA is not controlled. Received: 7 May 1998 / Accepted: 19 October 1998  相似文献   

10.
Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (Nm) and on an area basis (Na) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between Nm and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of Na investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in Na among species were conditioned both by the LMA–GSF relationship and by the species Nm value. The lowest Nm value was measured in I. aquifollium (14.3 ± 0.6 mg g–1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g–1) and Prunus avium (19.1 ± 0.6 mg g–1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g–1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.  相似文献   

11.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

12.
为揭示鹿角杜鹃(Rhododendron latoucheae)群落灌木层植物叶功能性状及其对环境变化的响应趋势,对分布于井冈山不同海拔梯度鹿角杜鹃群落灌木层植物的叶功能性状进行了研究。结果表明,海拔梯度对灌木植物的叶功能性状有显著影响。随海拔的升高,叶片的干物质含量(LDMC)、厚度(LT)、氮含量(LNC)、磷含量(LPC)呈显著上升趋势,比叶面积(SLA)和N/P呈显著下降趋势,而叶大小(LS)呈先上升后下降的变化趋势;灌木植物叶片的LDMC与SLA、LS呈负相关,与LT、LNC、LPC呈正相关;SLA与LT、LNC呈负相关;LS与LT呈负相关;LNC与LPC呈正相关;N/P与LPC呈负相关;环境因子对灌木植物叶功能性状有重要影响,除受海拔的影响外,LPC、N/P还受坡位的影响,LS、LNC则分别还受到坡向和坡度的影响。因此,井冈山地区鹿角杜鹃群落灌木层植物通过改变叶功能性状来适应海拔和其它环境因子的变化。  相似文献   

13.
The restinga comprises coastal vegetation formations which dominate the Atlantic seaboard of Brazil. Exposed sand ridges and associated lagoon systems have poorly developed soils subject to pronounced water deficits. Distinct vegetation zones support a high diversity of life forms, and a comparative study has been undertaken to investigate interactions between degree of exposure, nutrient supply and photosynthetic pathway (C3, or CAM) in selected species across the restinga. A number of species occurring throughout the restinga were chosen as representative species of different life forms, comprising C3 pioneer shrubs (Eugenia rotundifolia and Erythroxylum ovalifolium), impounding (tank) terrestrial bromeliad (Neoregelia cruenta: CAM) and the atmospheric epiphyte (Tillandsia stricta: CAM). Comparisons of plant and soil nutrient composition, and airborne deposition were conducted for each zone. Soil nutrient content and organic matter were closely related, reaching a maximum in zone 4, the seaward face of the inner dune. Salt concentration in leaves was independent of atmospheric deposition for the terrestrial species, in contrast to the atmospheric epiphyte T. stricta. In the slack area, vegetation formed characteristic “islands” with the soil beneath enriched in nutrients, suggesting a complex interplay between plants and soil during the development of vegetation succession. Here, two additional trees were investigated, C3 and CAM members of the Clusiaceae, respectively Clusia lanceolata and C. fluminensis. Stable isotope composition of nitrogen (δ15N) was generally more negative (depleted in 15N) in plants with low total nitrogen content. This was exemplified by the atmospheric bromeliad, T. stricta, with an N content of 2.91 g/kg and δ15N of ?12.3 per mil. Stable isotopes of carbon (δ13C) were used to identify the distribution of photosynthetic pathways, and while the majority of bromeliads and orchids were CAM, analysis of the soil organic matter suggested that C3 plants made the major contribution in each zone of the restinga. Since δ13C of plant material also suggested that water supply was optimal in zone 4, we conclude that succession and high diversity in the restinga is dependent on exposure, edaphic factors, and perhaps a critical mass of vegetation required to stabilize nutrient relations of the system.  相似文献   

14.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

15.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

16.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

17.
In the tropics, old-growth forests are converted to other land cover types at a high rate and young secondary forest may gain in importance. Information on associated changes in leaf gas exchange and other leaf traits can be valuable for modelling biogeochemical fluxes under altered land-use patterns. We studied in situ photosynthetic parameters and stomatal conductance for water vapour in eight abundant tree species of young secondary forest and eight tree species of natural old-growth forest in Central Sulawesi, Indonesia. In sun leaves, the average maximal stomatal conductance (g smax) in the secondary forest (SF) species was 2.1 times higher than in the old-growth forest (OGF) species. Species with a high g smax reduced g s sharply when vapour pressure deficit of the air increased, whereas species with a low g smax were much less sensitive to air humidity. For area-based photosynthetic capacity (A max-area), the SF species had a 2.3 times higher average than the OGF species. For both, g smax and A max-area the variation among species was higher in the OGF than in the SF. When all tree species (n=16) are considered, species means of specific leaf area (SLA), leaf N concentration and leaf P concentration were significantly correlated with g smax and A max-area. The strong correlation between A max-area and foliar P (r 2=0.8) is remarkable as the alluvial soils in the study region are rich in nutrients. If the eight OGF species are analysed separately, the only significant correlation was observed between SLA and mass-based A max; in the SF species strong correlations were found between leaf size and A max-area and g smax. These results show that the conversion of old-growth forest to young secondary forest in Sulawesi significantly alters tree leaf gas exchange characteristics and that chemical and structural leaf traits can be used for the prediction of these changes. The best correlations between leaf gas exchange parameters and leaf traits were obtained by different traits in the SF species, the OGF species and the entire pool of studied species.  相似文献   

18.
Shimizu M  Ishida A  Hogetsu T 《Oecologia》2005,143(2):189-197
We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lpr) decreased. Lpr was sensitive to brief treatments with HgCl2 (a specific inhibitor of aquaporins). This allows Lpr to be divided into two components: cell-to-cell and apoplastic pathways. The Lpr of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lpr. Physiologically, pioneer species showed larger decreases in Lpr and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.  相似文献   

19.
目前对于荒漠灌木光能利用效率(LUE)的季节变异及其调控因素,尤其是其生物调控因素的认识非常有限,导致了荒漠生态系统生产力模型的不确定性。拟验证假设:长期干旱环境下,典型荒漠灌木油蒿光能利用效率日均值(LUEday)的动态变化与叶片性状的季节性调整有关。试验采用Li-6400便携式光合仪定期测量了油蒿生长季叶片LUEday的季节动态及相关叶性状指标,探究叶性状对LUEday的影响。结果表明:LUEday的季节波动范围为0.003-0.017 mol/mol,整体变异系数(CV)为38.75%。完全展叶期LUEday均值相比生长季平均值降低17.37%,相比展叶期和落叶期时降低30%;8个叶性状的季节变异幅度差异较大,其中总叶绿素含量(Chl)、类胡萝卜素含量(Car)和叶氮含量(LNC)均表现出较大的季节变异性(CV ≥ 20%),叶碳含量(LCC)和叶片相对含水量(LRWC)的变异程度最低(CV<7%)。LRWC与所有叶片化学性状(Chl、Chl a/b、Car、LNC和LCC)均存在显著相关,表明其变化与叶片的养分吸收、光合色素合成以及碳同化的运输过程密切相关;油蒿LUEday的相对变化与LRWC、Chl a/b和LNC显著正相关,而LRWC和LNC的季节动态受空气温度(Ta)和土壤含水量(VWC)的共同调节,Chl a/b的季节波动主要由浅层土壤含水量(10 cm VWC)控制。以上研究结果强调,在未来预计极端的气候事件(如极端干旱和持续热浪事件)发生更频繁的旱地场景中,时间尺度植物叶性状对于土壤干旱和高温的适应性调整应当被充分考虑到旱地生态系统的通量建模方案中。该结果将为构建叶片尺度的光合生理模型与厘清LUE的生物调控机制提供理论依据。  相似文献   

20.
该研究采用样线和样地相结合的方法,对甘肃省白水江国家级自然保护区摩天岭北坡大垭子梁森林不同海拔(1 600~2 100m)的植物群落进行野外调查、采样分析,并运用线性回归分析、Pearson相关性分析及曲线拟合分析方法,研究木本植物的比叶面积(SLA)、叶干物质含量(LDMC)、叶碳氮磷含量(LCC、LNC、LPC)及其计量比(C/N、C/P、N/P)等叶性状变化特征,以及在物种和群落水平随海拔梯度的变化趋势和相关性。结果表明:(1)摩天岭北坡大垭子梁山地森林为落叶阔叶林带,共有木本植物13科23种,其中乔木6种,灌木17种,且整体上灌木种类较为丰富。此外,有些物种在不同海拔间都有分布,如华北落叶松(Larix principis-rupprechtii)、胡枝子(Lespedeza bicolor)等,反映出不同植物对于异质环境的适应。(2)8个叶功能性状中变异系数最小的是LCC(4.6%),属于弱变异,最大的是SLA(42.1%),其他叶性状都属于中等变异,表明在其他叶性状的协同作用下,使得木本植物的碳获取保持在一定的水平以确保群落的稳定性。(3)叶片功能性状间的关联性普遍存在,是植物适应环境的一种对策.该研究表明SLA-LNC以及LNC-LPC在物种和群落水平上的相关性及其相关程度均一致,而其他叶性状间相关关系则有所不同,这为以后进行大尺度研究时对叶性状的选择提供了一定的依据。(4)叶性状随海拔的变化趋势,除C/N和N/P在物种和群落水平上变化趋势不一致外,其他各个性状随海拔的总体变化趋势基本一致,但显著程度只有LNC一致外其他均不同,反映了木本植物的不同叶片功能性状对海拔造成的不同环境的适应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号