首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SummaryLipoprotein lipase (LPL) is a major lipolytic enzyme in the intravascular metabolism of postprandial triglyceride-rich lipoproteins. This enzyme is synthesized and secreted by tissues and transported to the capillary endothelial surface. Decreased activity of this enzyme is suggested to be involved in arterial sequestration of lipoproteins and thus in the progression of atherosclerosis. Titanium salts are widely used in industry, medicine, and pharmacy for tablet coating, pharmaceuticals and cosmetic products. In this study the effect of titanium on post-heparin LPL activity is reported in vivo and in vitro.MethodsGroups of Male Wistar rats were administered (i.p) with an acute dose of 2.5 mg/kg titanium chloride for 10 days and a chronic dose of 0.75 mg/kg for 30 and/or 60 days. Blood samples were then collected for LPL assay. For in vitro study, plasma aliquots were incubated in the presence of up to 50 mM titanium and the enzyme activity was measured.ResultsAnimals exposed to acute dose of titanium showed about 20% reduction in LPL activity, whereas 31% and 36% reductions were observed in animals chronically exposed for 30 and/or 60 days, respectively. Titanium in vitro also led to enzyme inhibition, so that a decrease of 28–53% was seen in the presence of 0.1–50 mM titanium. This inhibition by titanium was potentiated when citrate and/or bicarbonate was present.ConclusionAlthough the mechanism of titanium effect on LPL activity in vivo and in vitro demands more investigations, the inhibitory effect of titanium ion in vivo should be considered seriously in subjects exposed to this metal ion. Changes in LPL activity may affect whole body lipid metabolism, a condition favorable for development and progression of atherosclerosis.  相似文献   

2.
《Cytokine》2011,53(3):168-174
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO2max for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-α levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-α and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), TNF-α (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect.  相似文献   

3.
AimsThe present study evaluated a comparative and combined hepatoprotective effect of atorvastatin (AS) and ferulic acid (F) against high fat diet (HFD) induced oxidative stress in terms of hyperlipidemia, anti-oxidative status, lipid peroxidation and inflammation.Main methodsMale Swiss albino mice were given a diet containing high fat (H) (23.9% wt/wt), supplemented with AS (10 mg/kg) or F (100 mg/kg) and both (10 and 100 mg/kg) for 8 weeks. The control mice (C) were fed with normal diet.Key findingsThe H mice exhibited increased body weight; hyperlipidemia; serum level of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6); hepatic lipid profile; lipid accumulation; reactive oxygen species (ROS) of hepatocytes, lipid peroxidation and liver antioxidant capacity was decreased. Immunofluorescent and Western blot assay revealed activation of nuclear factor kappa B (NF-κB) signaling pathway. The addition of F or AS and both in the diet significantly counteracted HFD induced body weight gain; hyperlipidemia; TNF-α, IL-6; hepatic lipid profile; fatty infiltration; NF-κB signaling pathway; ROS; lipid peroxidation and moreover elevated levels of hepatic antioxidant enzymes activity were observed.SignificanceSimultaneous treatment with AS, F and their combination protected against HFD induced weight gain and oxidative stress. The protection may be attributed to the hypolipidemic and free radical scavenging activity of AS or F and their combination. This study illustrates that AS and F have relatively similar hypolipidemic, antioxidative, anti-inflammatory actions and the AS + F combination along with HFD has shown outstanding effects as compared to other treated groups.  相似文献   

4.
Excess visceral adiposity may predispose to chronic diseases like hypertension and type 2 diabetes with a high risk for coronary artery disease. Adipose tissue secreted cytokines and oxidative stress play an important role in chronic disease progression. To combat adiposity, plant-derived triterpenes are currently receiving much attention as they possess antioxidant and anti-inflammatory properties and the ability to regulate glucose and lipid metabolism. In the search for potential antiobese compounds from natural sources, this study evaluated the effects of oleanolic acid (OA), a pentacyclic triterpene commonly present in fruits and vegetables, in glucose tolerance test and on high-fat diet (HFD)-induced obesity in mice. Adult male Swiss mice treated or not with OA (10 mg/kg) were fed a HFD during 15 weeks. Sibutramine (SIB) treated group (10 mg/kg) was included for comparison. Weekly body weights, food and water consumption were measured, and at the end of study period, the levels of blood glucose and lipids, plasma hormone levels of insulin, ghrelin and leptin, and the visceral abdominal fat content were analysed. Mice treated with OA and fed a HFD showed significantly (p < 0.05) improved glucose tolerance, decreased body weights, visceral adiposity, blood glucose, plasma lipids relative to their respective controls fed no OA. Additionally, OA treatment, while significantly elevating the plasma hormone level of leptin, decreased the level of ghrelin. However, it caused a greater decrease in plasma amylase activity than lipase. Sibutramine-treated group also manifested similar effects like OA except for blood glucose level that was not different from HFD control. These findings suggest that OA ameliorates visceral adiposity and improves glucose tolerance in mice and thus has an antiobese potential through modulation of carbohydrate and fat metabolism.  相似文献   

5.
Objective of this study was to investigate the effect of feeding protected fat and proteins on milk production, composition and nutrient utilization in Murrah buffaloes (Bubalus bubalis). Eighteen buffaloes were divided into two groups (9 each) on the basis of most probable production ability. Buffaloes in control group (C group; most probable production ability 2204 kg) were fed chaffed wheat straw, chopped maize fodder and concentrate mixture as per requirements. Buffaloes in supplemented group (S group; most probable production ability 2211 kg) were fed same ration as C group plus 2.5% rumen protected fat (on dry matter intake basis) and formaldehyde treated mustard and groundnut oil cake (1.2 g formaldehyde/100 g crude protein) in place of unprotected cakes. Group S buffaloes were supplemented rumen protected fat and protein 60 days pre-partum to 90 days postpartum and persistence of milk production was monitored up to 210 days of lactation. Milk yield during supplementation period (90 days) in S group was 13.11 kg/d and was 19% higher (P<0.01) than the C group (11.01 kg/d), whereas after supplement withdrawal (120 days), it was 11.04 kg/d and was 15% higher (P<0.01) than the C group (9.61 kg/d). There was no effect on total solid, protein, solid-not fat (SNF) and lactose contents in the two groups, whereas milk fat yield was increased (P<0.05) and level of milk urea nitrogen was decreased (P<0.01) in S group. Moreover, the supplement produced noticeable changes in the fatty acid profile of the milk fat, i.e., reduction in the concentration of saturated fatty acids (SFA) by 19% and an increase in that of unsaturated fatty acids (USFA) by 36%. Besides, digestibility of dry matter, crude protein, acid detergent fiber and neutral detergent fiber were not affected, whereas ether extract digestibility was higher (P<0.05) in S group. There was no effect on plasma glucose, non-esterified fatty acids, triglycerides and cholesterol concentrations between two groups, whereas blood urea nitrogen concentration was lower (P<0.01) in S group. Supplementation of protected nutrients to buffaloes increased milk production and unsaturated fatty acids content in milk fat and persistence of lactation after supplements were withdrawn.  相似文献   

6.
IntroductionInsulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG) index as a marker of insulin resistance and to compare it to the triglycerides/HDL cholesterol ratio (TG/HDL-C), in subjects with and without metabolic syndrome (MS).Material and methodsAn observational, cross-sectional study was conducted on 525 adults of a population from Bahia Blanca, Argentina, who were divided into two groups: with MS (n = 89) and without MS (n = 436). The discriminating capacities for MS of the TyG index, calculated as Ln (TG [mg/dL] x glucose [mg/dL]/2), and the TG/HDL-C ratio were evaluated. Pre-test probability for MS was 30%.ResultsThe mean value of the TyG index was higher in the group with MS as compared to the group without MS and its correlation with the TG/HDL-C ratio was good. The cut-off values for MS in the overall population were 8.8 for the TyG index (sensitivity = 79%, specificity = 86%), and 2.4 for the TG/HDL-C ratio (sensitivity = 88%, specificity = 72%). The positive likelihood ratios and post-test probabilities for these parameters were 5.8 vs 3.1 and 72% vs 58% respectively. The cut-off point for the TyG index was 8.8 in men and 8.7 in women; the respective values for TG/C-HDL were 3.1 in men and 2.2 in women.ConclusionsThe TyG index was a good discriminant of MS. Its simple calculation warrants its further study as an alternative marker of insulin resistance.  相似文献   

7.
《Cytokine》2014,67(2):156-159
Apolipoprotein E (APOE) genotype is believed to play an important role in cardiovascular risk. APOE4 carriers have been associated with higher blood lipid levels and a more pro-inflammatory state compared with APOE3/E3 individuals. Although dietary fat composition has been considered to modulate the inflammatory state in humans, very little is known about how APOE genotype can impact on this response. In a follow-up to the main SATgenε study, we aimed to explore the effects of APOE genotype, as well as, dietary fat manipulation on ex vivo cytokine production. Blood samples were collected from a subset of SATgenε participants (n = 52/88), prospectively recruited according to APOE genotype (n = 26 E3/E3 and n = 26 E3/E4) after low-fat (LF), high saturated fat (HSF) and HSF with 3.45 g docosahexaenoic acid (DHA) dietary periods (each diet eight weeks in duration assigned in the same order) for the measurement of ex vivo cytokine production using whole blood culture (WBC). Concentrations of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha were measured in WBC supernatant samples after stimulation for 24 h with either 0.05 or 1 μg/ml of bacterial lipopolysaccharide (LPS). Cytokine levels were not influenced by genotype, whereas, dietary fat manipulation had a significant impact on TNF-α and IL-10 production; TNF-α concentration was higher after consumption of the HSF diet compared with baseline and the LF diet (P < 0.05), whereas, IL-10 concentration was higher after the LF diet compared with baseline (P < 0.05). In conclusion, our study has revealed the amount and type of dietary fat can significantly modulate the production of TNF-α and IL-10 by ex vivo LPS-stimulated WBC samples obtained from normolipidaemic subjects.  相似文献   

8.
This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD + LA, HFD + R, HFD + Q and normal diet for 26 weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P < .05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P < .05) in HFD mice (0.69 ± 0.225 U/mg protein) compared with controls (0.28 ± 0.114 U/mg protein), HFD + LA (0.231 ± 0.02 U/mg protein) and HFD + Q (0.182 ± 0.096 U/mg protein) at 26 weeks. Moreover, Na+/K+-ATPase and Ca2 +-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases.  相似文献   

9.
Alterations in lipid metabolism play a significant role in the pathogenesis of obesity-associated disorders, and dysregulation of the lipidome across multiple diseases has prompted research to identify novel lipids indicative of disease progression. To address the significant gap in knowledge regarding the effect of age and diet on the blood lipidome, we used shotgun lipidomics with electrospray ionization-mass spectrometry (ESI-MS). We analyzed blood lipid profiles of female C57BL/6 mice following high-fat diet (HFD) and low-fat diet (LFD) consumption for short (6 weeks), long (22 weeks), and prolonged (36 weeks) periods. We examined endocannabinoid levels, plasma esterase activity, liver homeostasis, and indices of glucose tolerance and insulin sensitivity to compare lipid alterations with metabolic dysregulation. Multivariate analysis indicated differences in dietary blood lipid profiles with the most notable differences after 6 weeks along with robust alterations due to age. HFD altered phospholipids, fatty acyls, and glycerolipids. Endocannabinoid levels were affected in an age-dependent manner, while HFD increased plasma esterase activity at all time points, with the most pronounced effect at 6 weeks. HFD-consumption also altered liver mRNA levels of PPARα, PPARγ, and CD36. These findings indicate an interaction between dietary fat consumption and aging with widespread effects on the lipidome, which may provide a basis for identification of female-specific obesity- and age-related lipid biomarkers.  相似文献   

10.
Obesity has become a global public health problem associated with metabolic dysfunction and chronic disorders. It has been shown that the risk of obesity and the DNA methylation profiles of the offspring can be affected by maternal nutrition, such as high-fat diet (HFD) consumption. The aim of this study was to investigate whether metabolic dysregulation and physiological abnormalities in offspring caused by maternal HFD can be alleviated by the treatment of methyl donors during pregnancy and lactation of dams. Female C57BL/6 mice were assigned to specific groups and given different nutrients (control diet, Control + Met, HFD and HFD + Met) throughout gestation and lactation. Offspring of each group were weaned onto a control diet at 3 weeks of age. Physiological (weight gain and adipose composition) and metabolic (plasma biochemical analyses) outcomes were assessed in male and female adult offspring. Expression and DNA methylation profiles of obesogenic-related genes including PPAR γ, fatty acid synthase, leptin and adiponectin were also detected in visceral fat of offspring. The results showed that dietary supplementation with methyl donors can prevent the adverse effects of maternal HFD on offspring. Changes in the expression and DNA methylation of obesogenic-related genes indicated that epigenetic regulation may contribute to the effects of maternal dietary factors on offspring outcomes.  相似文献   

11.
《Small Ruminant Research》2007,70(1-3):95-102
The effect of grazing and homeopathic therapy on sheep immune response and milk production was investigated on 40 multiparous Merino derived ewes. Twenty animals were housed in an indoor-bedded pen (P), whereas 20 others were allowed to graze on pasture for 9 h/d (G). P and G animals were fed an equivalent diet in terms of dry matter intake, crude protein percentage and energy concentration. In each group, 10 animals were subjected to unicistic homeopathic treatments (H), while 10 ewes were kept as a control and treated with conventional medicine when necessary (C). The grazing rearing system had a marked positive effect on in vivo cellular immune response (delayed-type hypersensivity to PHA, P < 0.001). Grazing animals produced more milk than the penned ones (1048.00 ± 75.61 kg versus 853.04 ± 67.78 kg, P < 0.05), with increased content of milk fat (7.69 ± 0.15% versus 7.25 ± 0.14%, P < 0.05). Accordingly, blood levels of triglycerides (P < 0.01), urea (P < 0.001) and alanine aminotransferase (ALT) (P < 0.001) were significantly higher in group G. The homeopathic treatments produced limited effects on the milk production and immune response. However, such treatments reduced the risk of contamination of the products with medicinal traces, as H group received no allopathic treatment.  相似文献   

12.
The small intestine is main site of exogenous lipid digestion and absorption, and it is important for lipid metabolic homeostasis. Cell death-inducing DNA fragmentation-factor like effector C (CIDEC) is active in lipid metabolism in tissues other than those in the intestine. We developed small intestine-specific CIDEC (SI-CIDEC-/-) knockout C57BL/6J mice by Cre/LoxP recombination to investigate the in vivo effects of intestinal CIDEC on lipid metabolism. Eight-week-old SI-CIDEC-/- mice fed a high-fat diet for 14 weeks had 15% lower body weight, 30% less body fat mass, and 79% lower liver triglycerides (TG) than wild-type (WT) mice. In addition, hepatic steatosis and fatty liver inflammation were less severe in knockout mice fed a high-fat diet (HFD) compared with wild-type mice fed an HFD. SI-CIDEC-/- mice fed an HFD diet had lower serum TG and higher fecal TG and intestinal lipase activity than wild-type mice. Mechanistic studies showed that CIDEC accelerated phosphatidic acid synthesis by interacting with 1-acylglycerol-3-phosphate-O-acyltransferase to promote TG accumulation. This study identified a new interacting protein and previously unreported CIDEC mechanisms that revealed its activity in lipid metabolism of the small intestine.  相似文献   

13.
Park S  Kim da S  Kang S  Kwon DY 《Life sciences》2011,88(17-18):766-773
AimsDiabetes increases the chances of stroke and the stroke itself is thought to induce hyperglycemia and diabetes. However, this latter contention remains uncorroborated. We investigated whether ischemic hippocampal neuronal cell death induces glucose dysregualtion by modulating insulin resistance, glucose-stimulated insulin secretion, and β-cell mass in Mongolian gerbils fed either a high fat or low fat diet.Main methodsGerbils were subjected to either an occlusion of the bilateral common carotid arteries for 8 mins to render them ischemic, or a sham operation. Ischemic gerbils were fed either an 11% fat diet (LFD) or a 40% fat diet (HFD) for 7, 14 or 28 days.Key findingsArtery occlusion resulted in a 70% or greater initial reduction in hippocampal CA1 neurons and only HFD decreased the percentage of CA1 neurons as the ischemic periods became longer. Oral glucose tolerance test (OGTT) results revealed that ischemia induced glucose intolerance, and longer ischemic periods and HFD exacerbated this glucose intolerance in ischemic gerbils. Insulin secretion during the OGTT was lower in ischemic gerbils than sham gerbils and the decrease was greatest in the 28 day-HFD among all the groups. Insulin resistance was elevated the most in 28 day-HFD ischemic gerbils. There was a progressive loss of pancreatic β-cell mass as the post-ischemic time period increased as consequence of HFD; the decrease being caused by increased apoptosis. This increase in apoptosis was partly associated with increased serum levels of IL-1β, TNF-α and non-esterified fatty acids.SignificanceHippoccampal neuronal cell death deteriorates glucose homeostasis initially through the modulation of insulin secretion and also causes a decrease in β-cell mass while HFD negatively impacts glucose regulation.  相似文献   

14.
《Small Ruminant Research》2008,79(1-3):169-175
The effect of water restriction on milk yield and composition, feed intake, body weight and blood parameters was evaluated in Comisana sheep reared under intensive condition. The experiment, lasted 40 days, was performed on 26 lactating ewes subdivided into three treatment groups; the control T group received water ad libitum (W-100) and Group 1 (W-80) and Group 2 (W-60) were watered, respectively, with 80 and 60% of the water consumed by the control T group. Water was supplied in the morning once a day while feed twice. Milk quality analysis was performed every 10 days for pH, fat, total protein, lactose and somatic cell content. Serum samples, performed at days 0, 13, 26 and 40, were analyzed for glucose, cholesterol, triglycerides, creatinine, total proteins, albumin, sodium, potassium, calcium and chloride. Compared to W-100, W-60 was significantly different (P < 0.05) for body weight and serum potassium levels and showed an increase (P < 0.01) in serum concentrations of triglycerides, albumin, total proteins and cholesterol (P < 0.05). Total proteins, triglycerides and sodium levels increased (P < 0.05) in W-80. Body weight showed a significant difference (P < 0.05) only in W-60 if compared to W-100. No significant differences were observed in milk yield, milk composition and feed intake across the treatment groups.  相似文献   

15.
BackgroundFurther quest for new anti-fungal compounds with proven mechanisms of action arises due to resistance and dose limiting toxicity of existing agents. Among the human fungal pathogens C. albicans predominate by infecting several sites in the body and in particular oral cavity and root canals of human tooth.MethodsIn the present study, we screened a library of β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine compounds against Candida sp. Detailed molecular studies were carried out with the active compound 3 on C. albicans. Morphological damage and antibiofilm activity of compound 3 on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. In silico docking studies were carried out to elucidate the mechanism of action of compound 3. Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model.ResultsScreening data showed that several new compounds were active against Candida sp. Among them, Compound 3 was most potent and exerted time kill effect at 4 h, post antifungal effect up to 6 h. When used in combination with fluconazole or nystatin, compound 3 revealed an minimum inhibitory concentration (MIC) decrease by 4 fold for both drugs used. In-depth molecular studies with compound 3 on C. albicans showed that this compound inhibited yeast to hyphae (Y-H) conversion and this involved the cAMP pathway. Further, SEM images of C. albicans showed that compound 3 caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, in silico studies revealed that compound 3 docks with the active site of the key enzyme 14-α-demethylase and this might inhibit ergosterol synthesis. In support of this, ergosterol levels were found to be decreased by 32 fold in compound 3 treated samples as analyzed by high performance liquid chromatography (HPLC). Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed 83% eradication of C. albicans and a 6 log reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model.ConclusionCompound 3 was found to be very effective in eradicating C. albicans by inhibiting cAMP pathway and ergosterol biosynthesis.General SignificanceThe results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.  相似文献   

16.
《Process Biochemistry》2014,49(4):660-667
This study investigated the novel use of scouring pad cubes as a support matrix for immobilization of fungal cell to enhance the pectinase production. Nylon scouring pad cubes were used for immobilized Aspergillus niger HFD5A-1 cells for pectinase production in flask submerge fermentation system. The enzyme activity of immobilized cell in scouring pad cubes gave higher activity compared to free cells. Various physical parameters for culture condition were studied to evaluate its effects on pectinase production. The maximum enzyme activity obtained was 11.05 U/mL on the 6th day of cultivation after using the optimized parameters of 6 scouring pad cubes, 1 × 107 spores/mL of inoculum size, agitation speed of 150 rpm and incubated at 30 °C. The use of nylon scouring pad cubes gave an increment of about 335.0% of pectinase production (11.05 U/mL) compared to free cells (2.54 U/mL). The results therefore show scouring pad cubes could be a favorable carrier to immobilize the fungal cells for higher enzyme production in submerged fermentation.  相似文献   

17.
《Cytokine》2014,68(2):102-106
BackgroundEstrogen is thought to aid maintenance of insulin sensitivity potentially through modulation of a counter-regulatory mechanism that interferes with the contribution of adaptive and innate immune systems to visceral fat deposition. We evaluated the impact of estrogen on long-term high fat diet (HFD) intake in B- and T-cell deficient and immunocompetent animals comparatively.MethodsA total of 16 BALB and 16 SCID mice, 8 of each sex and strain, were randomized to receive low fat diet, 4.1% fat or HFD, 35% fat, such that there was a group of both each sex and each strain receiving each diet. Biweekly levels of adiponectin, leptin and insulin levels were assessed and a glucose tolerance test (GTT) was performed after 13 weeks.ResultsUnlike their male counterparts, HFD-fed SCID females neither gained weight, nor became insulin resistant. Meanwhile, in the HFD-fed BALB groups both males and females gained weight similarly, but remarkable sexual dimorphism was nonetheless observed. The females had notable higher adiponectin levels as compared to males (10–60 μg/mL vs. 6–10 μg/mL respectively) causing the adiponectin-to-leptin (A/L) ratio to reach 80 one week after HFD initiation. The A/L dropped to 10, still higher than males, by week 13, but dropped to 2 by the end of the study in agreement with inverse insulin trends. None of the HFD-fed female groups developed insulin resistance (IR) by week 13, while all male counterparts had. Similar results were observed in the HFD-fed SCID groups whereby the females did not develop IR and had a higher A/L; however, adiponectin levels were comparable between groups (5–11 μg/mL).ConclusionsThe present study provides lacking evidence indicating that estrogen may be sufficient to prevent weight gain and development of glucose intolerance in high-fat fed B- and T-cell deficient mice.  相似文献   

18.
A series of novel thiazolyl-pyrazoline derivatives containing benzodioxole (C1–C20) have been designed and synthesized. Among of the synthesized compounds, 2-(5-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-(4-bromophenyl)thiazole (C6) displayed the most potent inhibitory activity for HER-2 (IC50 = 0.18 μM for HER-2). Antiproliferative assay results indicated that compound C6 owned high antiproliferative activity against MCF-7 and B16-F10 in vitro, with IC50 value of 0.09 and 0.12 μM, respectively, being comparable with the positive control Erlotinib. Docking simulation was further performed to determine the probable binding model. Based on the preliminary results, compound C6 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

19.
PPARγ and 11β-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARγ agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11β-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of α-aryloxy-α-methylhydrocinnamic acids as dual functional agents which activate PPARγ and inhibit 11β-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARγ (EC50 = 6.76 μM) and 11β-HSD1 (IC50 = 0.76 μM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.  相似文献   

20.
Thanatin was first discovered from the hemipteran insect Podisus maculiventris and showed a promising antimicrobial activity. Multidrug-resistant (MDR) clinical isolates of Klebsiella pneumoniae have developed resistance to current therapies. As an attempt to resolve this problem, the efficacy of thanatin and its analogues against clinical isolates of K. pneumoniae was studied in vitro and in vivo. S-thanatin showed an improved antimicrobial activity with the tested MIC values was 2–8-fold lower than those of other thanatin analogs. Antimicrobial assay indicated a high activity of S-thanatin against K. pneumoniae in vitro with MIC between 4 and 8 μg/ml. Its in vivo activity was evaluated using a K. pneumoniae-infected mice model. Adult male ICR mice were randomly grouped and given an intraperitoneal (i.p.) administration of 2 × 1010 colony-forming units of K. pneumoniae (CI 120204205). Afterwards, mouse groups were subjected to i.p. administration of saline or S-thanatin (5, 10, or 15 mg/kg). After an inspection of 72 h, the mice were finally sacrificed for analysis of in vivo bacterial growth and plasma endotoxin level. The results showed that S-thanatin administration apparently improved the survival rate and reduced the bacterial CFU from intra-abdominal fluid in mice. The plasma endotoxin level was improved as well. All above implied that S-thanatin, as an alternative, may provide a novel strategy for treating K. pneumoniae infection and other infections due to multidrug-resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号