首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic structural determinants for export trafficking of G protein‐coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The α2B‐adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates α2B‐AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of α2B‐AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of β2‐AR, α1B‐AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.  相似文献   

2.
G protein-coupled receptors (GPCRs) constitute a superfamily of cell-surface receptors which share a common topology of seven transmembrane domains and modulate a variety of cell functions through coupling to heterotrimeric G proteins by responding to a vast array of stimuli. The magnitude of cellular response elicited by a given signal is dictated by the level of GPCR expression at the plasma membrane, which is the balance of elaborately regulated endocytic and exocytic trafficking. This review will cover recent advances in understanding the molecular mechanism underlying anterograde transport of the newly synthesized GPCRs from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane. We will focus on recently identified motifs involved in GPCR exit from the ER and the Golgi, GPCR folding in the ER and the rescue of misfolded receptors from within, GPCR-interacting proteins that modulate receptor cell-surface targeting, pathways that mediate GPCR traffic, and the functional role of export in controlling GPCR signaling.  相似文献   

3.
The molecular mechanisms regulating G protein‐coupled receptors (GPCRs) trafficking from their site of synthesis in the endoplasmic reticulum (ER) to their site of function (the cell surface) remain poorly characterized. Using a bioluminescence resonance energy transfer‐based proteomic screen, we identified a novel GPCR‐interacting protein; the human cornichon homologue 4 (CNIH4). This previously uncharacterized protein is localized in the early secretory pathway where it interacts with members of the 3 family of GPCRs. Both overexpression and knockdown expression of CNIH4 caused the intracellular retention of GPCRs, indicating that this ER‐resident protein plays an important role in GPCR export. Overexpression of CNIH4 at low levels rescued the maturation and cell surface expression of an intracellularly retained mutant form of the β2‐adrenergic receptor, further demonstrating a positive role of CNIH4 in GPCR trafficking. Taken with the co‐immunoprecipitation of CNIH4 with Sec23 and Sec24, components of the COPII coat complex responsible for ER export, these data suggest that CNIH4 acts as a cargo‐sorting receptor, recruiting GPCRs into COPII vesicles .   相似文献   

4.
Many structural determinants for G protein-coupled receptor (GPCR) functions have been defined, but little is known concerning the regulation of their transport from the endoplasmic reticulum (ER) to the cell surface. Here we show that a carboxy-terminal hydrophobic motif, FxxxFxxxF, which is highly conserved among GPCRs, functions independently as an ER-export signal for the dopamine D1 receptor. A newly identified ER-membrane-associated protein, DRiP78, binds to this motif. Overexpression or sequestration of DRiP78 leads to retention of D1 receptors in the ER, reduced ligand binding, and a slowdown in the kinetics of receptor glycosylation. Our results indicate that DRiP78 may regulate the transport of a GPCR by binding to a specific ER-export signal.  相似文献   

5.
STIM1 is a core component of the store‐operated Ca2+‐entry channel involved in Ca2+‐signaling with an important role in the activation of immune cells and many other cell types. In response to cell activation, STIM1 protein senses low Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) and activates the channel protein Orai1 in the plasma membrane by direct physical contact. The related protein STIM2 functions similar but its physiological role is less well defined. We found that STIM2, but not STIM1, contains a di‐lysine ER‐retention signal. This restricts the function of STIM2 as Ca2+ sensor to the ER while STIM1 can reach the plasma membrane. The intracellular distribution of STIM1 is regulated in a cell‐cycle‐dependent manner with cell surface expression of STIM1 during mitosis. Efficient retention of STIM1 in the ER during interphase depends on its lysine‐rich domain and a di‐arginine ER retention signal. Store‐operated Ca2+‐entry enhanced ER retention, suggesting that trafficking of STIM1 is regulated and this regulation contributes to STIM1s role as multifunctional component in Ca2+‐signaling.  相似文献   

6.
Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins.  相似文献   

7.
Development of diabetes is associated with altered expression of adenosine receptors (ARs). Some of these alterations might be attributed to changes in insulin concentration. This study was undertaken to investigate the possible insulin effect on ARs level, and to determine the signaling pathway utilized by insulin to regulate the expression of ARs in rat B lymphocytes. Western blot analysis of B lymphocytes protein extracts indicated that all four ARs were present at detectable levels in the cells cultured for 24 h without insulin (≤10?11 M), although the protein band of A2A‐AR was barely visible. Inclusion of insulin (10?8 M) in the culture medium resulted in an increase of A1‐AR and A2A‐AR protein levels and a significant decrease of A2B‐AR protein, whereas the protein level of A3‐AR remained unchanged. Alterations in the ARs protein content were accompanied by changes in the ARs mRNA levels. Increase of the insulin concentration from 10?11 to 10?8 M resulted in 50% decrease of A2B‐AR mRNA level and two‐, and threefold increase of A1‐AR and A2A‐AR mRNA levels, respectively. Pretreatment of B cells with cycloheximide completely blocked the insulin action on A1‐AR and A2A‐AR mRNA, but not on A2B‐AR expression. Detailed pharmacological analysis demonstrated that insulin‐induced A1‐AR and A2A‐AR mRNA expression through the Ras/Raf‐1/MEK/ERK pathway. The insulin effect on A2B‐AR expression was blocked by p38 MAP kinase inhibitor (SB 203580). Concluding, elevated insulin concentration differentially affects the expression of ARs in B lymphocytes in a fashion that might enhance the various immunomodulatory effects of adenosine. J. Cell. Biochem. 109: 396–405, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Many G-protein coupled receptors (GPCRs), such as odorant receptors (ORs), cannot be characterized in heterologous cells because of their difficulty in trafficking to the plasma membrane. In contrast, a surrogate OR, the GPCR mouse β2-adrenergic-receptor (mβ2AR), robustly traffics to the plasma membrane. We set out to characterize mβ2AR mutants in vitro for their eventual use in olfactory axon guidance studies. We performed an extensive mutational analysis of mβ2AR using a Green Fluorescent Protein-tagged mβ2AR (mβ2AR::GFP) to easily assess the extent of its plasma membrane localization. In order to characterize mutants for their ability to successfully transduce ligand-initiated signal cascades, we determined the half maximal effective concentrations (EC50) and maximal response to isoprenaline, a known mβ2AR agonist. Our analysis reveals that removal of amino terminal (Nt) N-glycosylation sites and the carboxy terminal (Ct) palmitoylation site of mβ2AR do not affect its plasma membrane localization. By contrast, when both the Nt and Ct of mβ2AR are replaced with those of M71 OR, plasma membrane trafficking is impaired. We further analyze three mβ2AR mutants (RDY, E268A, and C327R) used in olfactory axon guidance studies and are able to decorrelate their plasma membrane trafficking with their capacity to respond to isoprenaline. A deletion of the Ct prevents proper trafficking and abolishes activity, but plasma membrane trafficking can be selectively rescued by a Tyrosine to Alanine mutation in the highly conserved GPCR motif NPxxY. This new loss-of-function mutant argues for a model in which residues located at the end of transmembrane domain 7 can act as a retention signal when unmasked. Additionally, to our surprise, amongst our set of mutations only Ct mutations appear to lower mβ2AR EC50s revealing their critical role in G-protein coupling. We propose that an interaction between the Nt and Ct is necessary for proper folding and/or transport of GPCRs.  相似文献   

9.
Gold nanoparticles (AuNPs) allow the tuning of pharmacokinetic and pharmacodynamic properties by active or passive targeting of drugs for cancer and other diseases. We have functionalized gold nanoparticles by tethering specific ligands, agonists and antagonists, of adenosine receptors (ARs) to the gold surface as models for cell surface interactions with G protein-coupled receptors (GPCRs). The AuNP conjugates with chain-extended AR ligands alone (PEGylated nucleosides and nonnucleosides, anchored to the Au via thioctic acid) were found to be insoluble in water due to hydrophobic entities in the ligand. Therefore, we added a second, biologically inactive pendant moiety to increase the water solubility, consisting of a PEGylated chain terminating in a carboxylic or phosphate group. The purity and stability of the immobilized biologically active ligand were examined by ultrafiltration and HPLC. Pharmacological receptor binding studies on these GPCR ligand-derivatized AuNPs (2–5 nm in diameter), performed using membranes of mammalian cells stably expressing human A1, A2A, and A3ARs, showed that the desired selectivity was retained with K i values (nanomolar) of A3AR agonist 21b and A2AAR antagonists 24 and 26a of 14 (A3), 34 (A2A), and 69 (A2A), respectively. The corresponding monomers displayed K i values of 37, 61, and 1,420 nM, respectively. In conclusion, we have synthesized stable, water-soluble AuNP derivatives of tethered A3 and A2AAR ligands that retain the biological properties of their monomeric ligands and are intended for therapeutic and imaging applications. This is the first prototypical application to gold carriers of small molecule (nonpeptide) GPCR ligands, which are under investigation for treatment of cancer and inflammatory diseases.  相似文献   

10.
Reticulon (RTN) proteins are localized to the endoplasmic reticulum (ER), and are related to intracellular membrane trafficking, apoptosis, inhibiting axonal regeneration, and Alzheimer's disease. The RTN proteins are produced without an N-terminal signal peptide. Their C-terminal domain contains two long hydrophobic segments. We analyzed the ER localization signal of human RTN1-A. Mutant proteins lacking the first (39 residues) or second (36 residues) hydrophobic segment showed ER localization. On the other hand, the mutant lacking both hydrophobic segments was cytosolic. Enhanced green fluorescent protein (EGFP) tagged with the first or second hydrophobic segment of RTN1-A was localized to the ER. These results suggest that each hydrophobic segment determines the ER localization. In addition, EGFP tagged with the truncated form of the first hydrophobic segment exhibited the localization to the Golgi rather than the ER. This suggests that the length of the hydrophobic segment contributes to the ER retention of RTN1-A.  相似文献   

11.
Ubiquitination by the E3 ligase Nedd4 and deubiquitination by the deubiquitinases USP20 and USP33 have been shown to regulate the lysosomal trafficking and recycling of agonist-activated β2 adrenergic receptors (β2ARs). In this work, we demonstrate that, in cells subjected to physiological stress by nutrient starvation, agonist-activated ubiquitinated β2ARs traffic to autophagosomes to colocalize with the autophagy marker protein LC3-II. Furthermore, this trafficking is synchronized by dynamic posttranslational modifications of USP20 that, in turn, are induced in a β2AR-dependent manner. Upon β2AR activation, a specific isoform of the second messenger cAMP-dependent protein kinase A (PKAα) rapidly phosphorylates USP20 on serine 333 located in its unique insertion domain. This phosphorylation of USP20 correlates with a characteristic SDS-PAGE mobility shift of the protein, blocks its deubiquitinase activity, promotes its dissociation from the activated β2AR complex, and facilitates trafficking of the ubiquitinated β2AR to autophagosomes, which fuse with lysosomes to form autolysosomes where receptors are degraded. Dephosphorylation of USP20 has reciprocal effects and blocks trafficking of the β2AR to autophagosomes while promoting plasma membrane recycling of internalized β2ARs. Our findings reveal a dynamic regulation of USP20 by site-specific phosphorylation as well as the interdependence of signal transduction and trafficking pathways in balancing adrenergic stimulation and maintaining cellular homeostasis.  相似文献   

12.
Central (hypothalamic) control of bone mass is proposed to be mediated through β2‐adrenergic receptors (β2‐ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both β‐ARs and α‐ARs, whether α‐ARs are expressed in human bone cells is controversial. The current study investigated the expression of α1‐AR and β2‐AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of α1B‐ and β2‐ARs was examined by RT‐PCR, immunofluorescence microscopy and Western blot (for α1B‐ARs). Proliferation in HOBs was assessed by 3H‐thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT‐PCR. RNA message for α1B‐ and β2‐ARs was expressed in HOBs and MG63 human osteosarcoma cells. α1B‐ and β2‐AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. α1B‐AR protein was identified in HOBs by Western blot. Both α1‐agonists and propranolol (β‐blocker) increased HOB replication but fenoterol, a β2‐agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The α1‐agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of α1B‐ARs in HOBs. These data indicate that both α1‐ARs and β2‐ARs are present and functional in HOBs. In addition to β2‐ARs, α1‐ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system. J. Cell. Physiol. 220: 267–275, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
G‐protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. β2‐Adrenergic receptor (β2‐AR) is a well‐studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand‐binding region of β2‐AR using the recently solved high‐resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure‐function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster β2‐AR by site‐directed mutagenesis. We replaced V114 in hamster β2‐AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G‐protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side‐chains but also the aryl‐ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in β2‐AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.  相似文献   

14.
Although homodimerization has been demonstrated for a large number of G protein-coupled receptors (GPCRs), no general role has been attributed to this process. Because it is known that oligomerization plays a key role in the quality control and endoplasmic reticulum (ER) export of many proteins, we sought to determine if homodimerization could play such a role in GPCR biogenesis. Using the beta2-adrenergic receptor (beta2AR) as a model, cell fractionation studies revealed that receptor homodimerization is an event occurring as early as the ER. Supporting the hypothesis that receptor homodimerization is involved in ER processing, beta2AR mutants lacking an ER-export motif or harboring a heterologous ER-retention signal dimerized with the wild-type receptor and inhibited its trafficking to the cell surface. Finally, in addition to inhibiting receptor dimerization, disruption of the putative dimerization motif, 276GXXXGXXXL284, prevented normal trafficking of the receptor to the plasma membrane. Taken together, these data indicate that beta2AR homodimerization plays an important role in ER export and cell surface targeting.  相似文献   

15.
16.
The melanocortin 1 receptor (MC1R), a Gs protein‐coupled receptor (GPCR) expressed in melanocytes, is a major determinant of skin pigmentation and phototype. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to reddish, poorly photoprotective pheomelanins. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation (the RHC phenotype) and increased skin cancer risk. Three highly penetrant RHC variants, R151C, R160W, and D294H are loss‐of‐function MC1R mutants with altered cell surface expression. In this study, we show that forward trafficking was normal for D294H. Conversely, export traffic was impaired for R151C, which accumulated in the endoplasmic reticulum (ER), and for R160W, which was enriched in the cis‐Golgi. This is the first report of steady‐state retention in a post‐ER secretory compartment of a GPCR mutant found in the human population. Residues R151 and R160 are located in the MC1R second intracellular loop (il2). Two other mutations in il2, T157A preventing T157 phosphorylation and R162P disrupting a 160RARR163 motif, also caused intracellular retention. Moreover, T157 was phosphorylated in wild‐type MC1R and a T157D mutation mimicking constitutive phosphorylation allowed normal traffic, and rescued the retention phenotype of R160W and R162P. Therefore, MC1R export is likely regulated by T157 phosphorylation and the 160RARR163 arginine‐based motif functions as an ER retrieval signal. These elements are conserved in mammalian MC1Rs and in all five types of human melanocortin receptors. Thus, members of this GPCR subfamily might share common mechanisms for regulation of plasma membrane expression. J. Cell. Physiol. 220: 640–654, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
Xueqin Pang  Mingjun Yang  Keli Han 《Proteins》2013,81(8):1399-1410
The A2A adenosine receptor (A2AAR) is a unique G‐protein coupled receptor (GPCR), because besides agonist, its antagonist could also lead to therapeutic relevance. Based on A2AAR‐antagonist crystal structure, we have studied the binding mechanism of two distinct antagonists, ZM241385 and KW6002, and dynamic behaviors of A2AAR induced by antagonist binding. Key residues interacting with both antagonists and residues specifically binding to one of them are identified. ZM241385 specifically bound to S672.65, M1775.38, and N2536.55, while KW6002 binds to F622.60, A813.29, and H2647.29. Moreover, interactions with L1675.28 are found for both antagonists, which were not reported in agonist binding. The dynamic behaviors of antagonist bound holo‐A2AARs were found to be different from the apo‐A2AAR in three typical functional switches, (i) the “ionic lock” was in equilibrium between formation and breakage in apo‐A2AAR, but stayed broken in holo‐A2AARs; (ii) the “rotamer toggle switch,” T883.36/F2426.44/W2466.48, adopted different rotameric conformations in apo‐A2AAR and holo‐A2AARs; (iii) apo‐A2AAR preferred α‐helical intracellular loop (IC)2 and flexible IC3, while holo‐A2AARs had a flexible IC2 and α‐helical IC3. Our results indicated that antagonist binding induced different conformational rearrangements of these characteristic functional switches in apo‐A2AAR and holo‐A2AARs. Proteins 2013; 81:1399–1410. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
β‐arrestin 1 and 2 (also known as arrestin 2 and 3) are homologous adaptor proteins that regulate seven‐transmembrane receptor trafficking and signalling. Other proteins with predicted ‘arrestin‐like’ structural domains but lacking sequence homology have been indicated to function like β‐arrestin in receptor regulation. We demonstrate that β‐arrestin2 is the primary adaptor that rapidly binds agonist‐activated β2 adrenergic receptors (β2ARs) and promotes clathrin‐dependent internalization, E3 ligase Nedd4 recruitment and ubiquitin‐dependent lysosomal degradation of the receptor. The arrestin‐domain‐containing (ARRDC) proteins 2, 3 and 4 are secondary adaptors recruited to internalized β2AR–Nedd4 complexes on endosomes and do not affect the adaptor roles of β‐arrestin2. Rather, the role of ARRDC proteins is to traffic Nedd4–β2AR complexes to a subpopulation of early endosomes.  相似文献   

20.
G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号