首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Antimycin A-sensitive cyclic electron flow (CEF) was discovered as cyclic phosphorylation by Arnon et al. (1954). Because of its sensitivity to antimycin A, PROTON GRADIENT REGULATION 5 (PGR5)/PGR5-like Photosynthetic Phenotype 1 (PGRL1)-dependent CEF has been considered identical to the CEF of Arnon et al. However, this conclusion still needs additional supportive evidence, mainly because of the absence of definitive methods of evaluating CEF activity. In this study, we revisited the classical method of monitoring cyclic phosphorylation in ruptured chloroplasts to characterize two Arabidopsis mutants: pgr5, which is defective in antimycin A-sensitive CEF, and chlororespiratory reduction 2-1 (crr2-1), which is defective in chloroplast NDH-dependent CEF. We observed a significant reduction in CEF-dependent pmf formation and consequently ATP synthesis in the pgr5 mutant, although LEF-dependent pmf formation and ATP synthesis were not impaired at photosynthetic photon flux densities below 130?μmol?m?2?s?1. In contrast, the contribution of chloroplast NDH complex to pmf formation and ATP synthesis was not significant. Antimycin A partially inhibited CEF-dependent pmf formation, although there may be further inhibition sites. Unlike in the observation in leaves, the proton conductivity of ATP synthase, monitored as gH+, was not enhanced in ruptured chloroplasts of the pgr5 mutant.  相似文献   

2.
PSI cyclic electron transport contributes markedly to photosynthesis and photoprotection in flowering plants. Although the thylakoid protein PGR5 (Proton Gradient Regulation 5) has been shown to be essential for the main route of PSI cyclic electron transport, its exact function remains unclear. In transgenic Arabidopsis plants overaccumulating PGR5 in the thylakoid membrane, chloroplast development was delayed, especially in the cotyledons. Although photosynthetic electron transport was not affected during steady-state photosynthesis, a high level of non-photochemical quenching (NPQ) was transiently induced after a shift of light conditions. This phenotype was explained by elevated activity of PSI cyclic electron transport, which was monitored in an in vitro system using ruptured chloroplasts, and also in leaves. The effect of overaccumulation of PGR5 was specific to the antimycin A-sensitive pathway of PSI cyclic electron transport but not to the NAD(P)H dehydrogenase (NDH) pathway. We propose that a balanced PGR5 level is required for efficient regulation of the rate of antimycin A-sensitive PSI cyclic electron transport, although the rate of PSI cyclic electron transport is probably also regulated by other factors during steady-state photosynthesis.  相似文献   

3.
C4 plants can fix CO2 efficiently using CO2‐concentrating mechanisms (CCMs), but they require additional ATP. To supply the additional ATP, C4 plants operate at higher rates of cyclic electron transport around photosystem I (PSI), in which electrons are transferred from ferredoxin to plastoquinone. Recently, it has been reported that the NAD(P)H dehydrogenase‐like complex (NDH) accumulated in the thylakoid membrane in leaves of C4 plants, making it a candidate for the additional synthesis of ATP used in the CCM. In addition, C4 plants have higher levels of PROTON GRADIENT REGULATION 5 (PGR5) expression, but it has been unknown how PGR5 functions in C4 photosynthesis. In this study, PGR5 was overexpressed in a C4 dicot, Flaveria bidentis. In PGR5‐overproducing (OP) lines, PGR5 levels were 2.3‐ to 3.0‐fold greater compared with wild‐type plants. PGR5‐like PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1), which cooperates with PGR5, increased with PGR5. A spectroscopic analysis indicated that in the PGR5‐OP lines, the acceptor side limitation of PSI was reduced in response to a rapid increase in photon flux density. Although it did not affect CO2 assimilation, the overproduction of PGR5 contributed to an enhanced electron sink downstream of PSI.  相似文献   

4.
After transferring the dark-acclimated cyanobacteria to light, flavodiiron proteins Flv1/Flv3 serve as a main electron acceptor for PSI within the first seconds because Calvin cycle enzymes are inactive in the dark. Synechocystis PCC 6803 mutant Δflv1flv3 devoid of Flv1 and Flv3 retained the PSI chlorophyll P700 in the reduced state over 10?s (Helman et al., 2003; Allahverdiyeva et al., 2013). Study of P700 oxidoreduction transients in dark-acclimated Δflv1flv3 mutant under the action of successive white light pulses separated by dark intervals of various durations indicated that the delayed oxidation of P700 was determined by light activation of electron transport on the acceptor side of PSI. We show that the light-induced redox transients of chlorophyll P700 in dark-acclimated Δflv1flv3 proceed within 2?min, as opposed to 1–3?s in the wild type, and comprise a series of kinetic stages. The release of rate-limiting steps was eliminated by iodoacetamide, an inhibitor of Calvin cycle enzymes. Conversely, the creation with methyl viologen of a bypass electron flow to O2 accelerated P700 oxidation and made its extent comparable to that in the wild-type cells. The lack of major sinks for linear electron flow in iodoacetamide-treated Δflv1flv3 mutant, in which O2- and CO2-dependent electron flows were impaired, facilitated cyclic electron flow, which was evident from the decreased steady-state oxidation of P700 and from rapid dark reduction of P700 during and after illumination with far-red light. The results show that the photosynthetic induction in wild-type Synechocystis PCC 6803 is largely hidden due to the flavodiiron proteins whose operation circumvents the rate-limiting electron transport steps controlled by Calvin cycle reactions.  相似文献   

5.
In this work, we summarize results of computer simulation of electron and proton transport processes coupled to ATP synthesis in chloroplasts performed within the frames of a mathematical model developed as a system of differential equations for concentrations of electron carriers and hydrogen ion inside and outside the granal and stromal thylakoids. The model takes into account topological peculiarities and lateral heterogeneity of the chloroplast lamellar system. This allowed us to analyze the influence of restricted diffusion of protons inside small compartments of a chloroplast (e.g., in the narrow inter-thylakoid gap) on electron transport processes. The model adequately describes two modes of pH-dependent feedback control of electron transport associated with: (i) the acidification of the thylakoid lumen, which causes the slowing down of plastoquinol oxidation and stimulates an increase in dissipation of excess energy in PS2, and (ii) the alkalization of stroma, inducing the activation of the BBC (Bassham-Benson-Calvin) cycle and intensified consumption of ATP and NADPH. The influence of ATP on electron transport is mediated by modulation of the thylakoid membrane conductivity to protons through the ATP synthase complexes. We also analyze the contribution of alternative electron transport pathways to the maintenance of optimal balance between the energy donating and energy consuming stages of the light-induced photosynthetic processes.  相似文献   

6.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

7.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号