首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dihydrochalcone phloridzin (phloretin 2′-O-glucoside) is the most abundant phenolic compound in apple trees (Malus × domestica) and was also discussed to have an influence on the pathogen defence by shifting the dihydrochalcone profile from the glucosides to the more active aglycones. The final step in the biosynthesis of phloridzin is the glycosylation of phloretin at position 2′. Three cDNA clones from apple encoding glycosyltransferases are available which are able to catalyze the reaction in vitro. We investigated the possible role of glycosyltransferase UGT71A15 in phloridzin biosynthesis. The recombinant enzyme showed broad substrate acceptance but highest activities were observed with flavonols. Specific activities and the kinetic data indicated that phloretin is not the preferred native substrate of the UGT71A15. However, an increase of the molar ratio phloridzin:phloretin was found in transgenic lines, indicating a physiological relevance of UGT71A15 in planta, although a decrease of the total amount of dihydrochalcones in the majority of the samples was found. Unexpectedly, the increase of the phloridzin:phloretin ratio was not reflected by an increase of the total glucosyltransferase activities. In contrast, the majority of transgenic plants showed a reduced glucosylating activity with both phloretin and quercetin as a substrate, but the observed activity changes in a given sample were not similar for the two substrates. An increased susceptibility of M. robusta against the fire blight causing bacterium E. amylovora as a result of UGT71A15 overexpression could not be observed. Overexpression of UGT71A15 in transgenic apple trees also did not lead to morphological changes.  相似文献   

2.
《Phytochemistry letters》2008,1(3):163-167
Two new isoprenylated flavanones, tonkinochromanes J (1) and K (2), and a new isoprenylated dihydrochalcone, tonkinochromane L (3), were isolated from the roots of Sophora tonkinensis along with four known compounds (4-7). Their structures were determined by means of spectroscopic analyses, including HRMS, IR, 1H and 13C NMR and 2D experiments (COSY, HSQC, and HMBC), and comparison with known related compounds.  相似文献   

3.
4.
Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the kcat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively.  相似文献   

5.
Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37 degrees C and 7.0, respectively. The K(m) for phloretin was 13 +/- 3 microM and the k(cat) was 10 +/- 2 s(-1). The enzyme did not transform phloretin-2'-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl(2) to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively.  相似文献   

6.
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a major cellular energy sensor and master regulator of metabolic homeostasis; thus, AMPK plays a central role in studies on diabetes and related metabolic diseases. From the rhizomes of Polygonatum odoratum (Mill.) Druce, six homoisoflavonoids (16) and one dihydrochalcone (7) were isolated, and the structures of polygonatones A–D (47) were elucidated by various spectroscopic analyses. Compounds 17 were evaluated for their effect on AMPK activation. The amount of active phosphorylated AMPK and acetyl-CoA carboxylase in rat liver epithelial IAR-20 cells increased when the cells were incubated with the aforementioned compounds. Specifically, (3R)-5,7-dihydroxyl-6-methyl-8-methoxyl-3-(4′-hydroxylbenzyl)-chroman-4-one (1), (3R)-5,7-dihydroxyl-6,8-dimethyl-3-(4′-hydroxylbenzyl)-chroman-4-one (2), (3R)-5,7-dihydroxyl-6-methyl-3-(4′-hydroxylbenzyl)-chroman-4-one (3), and polygonatone D (7) exhibited significant activation effects.  相似文献   

7.
Some dihydrochalcones and related flavonoids were tested Cor their effects upon indoleacetic acid oxidase (mainly from pea roots) and upon oxidative phosphorylation in mitochondria from cucumber hypocotyls. Also their influence upon the growth of wheat roots and upon the absorption of 14C-labelled sugars and 2, 4-dichloro-phenoxyacetic acid in wlieat roots was studied. The dihydrochalcone glucoside phloridzin known for its strong inhibitory effects upon sugar transport in some animal tissues gives no corresponding specific effects in higher plants. Phloridzin and some related dihvdrochalcone glycosides as well as the structurally similar compounds naringenin and 2′, 4, 4′-trihydroxychalcone are potent stimulators of indoleacetic acid oxidase. Sieboldin, which compared to phloridzin has an additional hydroxyl group (giving an ortho-diphenolic substitution in the B-ring) is a strong inhibitor of indoleacetic acid oxidase (10?6M gives about 50 per cent Inhibition). Phloridzin and sieboldin replace each other in different groups of species in the genus Malus. The aglycones phloretin, naringenin and 2′, 4, 4′-trihydroxychalcone stimulate wheat root growth (especially in the presence of auxins or growth-inhibilory sugars) and inhibit the absorption of sugars and of 2, 4-dichlorophenoxyacetic acid. They also inhibit oxidative phosphorylalion and give a distinct uncoupling effect. The glycosides are as a rule less active in all these respects and sieboldin is almost inactive. There is a rather good correlation between uncoupling of oxidative phosphorylation and effects upon root growth, whereas there is no agreement in the details between the effects upon root growth and upon IAA oxidase.  相似文献   

8.
A phytochemical investigation of the roots extract of Cichorium glandulosum led to the isolation and characterization of fourteen compounds, including five sesquiterpene lactones (15), five flavonoids (610), and four lignans (1114). Their structures were determined by spectroscopic data analysis and comparison with the literatures. This is the first report of the crystal data of lactucopicrin (1). This is the first time to report the isolation of 6,8,11-epi-desacetylmatricarin (2), desacetylmatricarin (3), ixerisoslde C (4), magnodelavin (5), 2ʹ,4-dihydroxy-4ʹ-methoxy-6ʹ-O-β-glucopyranoside dihydrochalcone (6), (−)-evofolin B (7), isoquercitrin (8), myricetin 7-methyl-ether-3-O-glucoside (9), (+)-medioresinol (12), 4-O-methylcedrusin [2-(3ʹ,4ʹ-dimethoxyphenyl)-3-hydroxymethyl-2,3-dihydro-7-hydroxybenzofuran-5-propan-1-ol] (13), and (2R,3S)-samwirin A (14) from C. glandulosum. Among them, compounds 5, 9, 13, and 14 were obtained from Asteraceae family for the first time. The chemotaxonomic significance of all the isolates 114 was discussed.  相似文献   

9.
Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated through the attenuated expression of several key proteins involved in cell cycle regulation, DNA topoisomerases IIα activity and epigenetic mechanisms followed by cell cycle arrest and apoptosis.  相似文献   

10.
Chemical investigation of the root of Rosa laevigata led to the isolation of sixteen phenolic compounds, including seven flavonoids (17), five condensed tannins (812), two stilbenes (13 and 14) and two benzoic acid derivatives (15 and 16). Their structures were identified as (+)-catechin (1), (+)-gallocatechin (2), (2R, 3S, 4S)-cis- leucocyanidin (3), (2R, 3S, 4S)-cis-leucofisetinidin (4), (2S, 3R, 4R)-cis- leucofisetinidin (5), dehydrodicatechin A (6), phloridzin (7), procyanidin B3 (8), fisetinidol-(4α, 8)-catechin (9), guibourtinidol- (4α, 8)-catechin (10), ent- isetinidol -(4α, 6)-catechin (11), fisetinidol-(4β, 8)-catechin (12), (Z)-3-methoxy-5-hydroxy- stilbene (13), (Z)-piceid (14), gallic acid (15) and 4-hydroxybenzoic acid- 4-O-β-D-glucopyranoside (16). Among them, compounds 3–7, 9–14, and 16 were isolated from R. laevigata for the first time, and compounds 3–7, 9, 10, 1214 and 16 were reported for the first time from the genus Rosa. The chemotaxonomic significance of these compounds was summarized.  相似文献   

11.
A phytochemical investigation of the roots of Bupleurum chinese DC. led to the isolation of eighteen compounds, including three chromones (13), seven flavonoids (410), one dihydrochalcone (11), two phenylpropanoid glycosides (12–13), one lignan (14), three sterols (1517) and one stilbenoid (18). Their structures were elucidated on the basis of NMR spectroscopic analysis and comparison with literature data. Compounds 6–7, 11–14 and 18 were firstly reported from the genus Bupleurum and the family Apiaceae. Moreover, the chemotaxonomic value of the isolates was also discussed.  相似文献   

12.
Five new heterocyclic compounds, 5-α-d-fructofuranosylmethyl-furfural (1), 5-β-d-fructofuranosylmethyl-furfural (2), 5-β-d-fructopyranosylmethyl-furfural (3), 4-(2-((2S-2,3-dihydroxypropoxy)methyl)-5-formyl-1H-pyrrol-1-yl)butanoic acid (4), and 3S,4S-4,5,8-trihydroxy-3-(prop-1-en-2-yl)isochroman-1-one (5), were obtained from the root of Ranunculus ternatus Thunb., which is a traditional Chinese anti-tuberculosis medicine. Their structures were elucidated by UV, IR, HRESIMS, NMR data, and the comparison of experimental and calculated electronic circular dichroism (ECD) spectra. Notably, compounds 13 are rarely occurring furfural fructosides in natural sources. These heterocyclic compounds could be further studied for the synthetic chemists and pharmacologists due to the source and structural properties.  相似文献   

13.
The phenolic compound phloridzin (phloretin 2′-O-glucoside, phlorizin, phlorrhizin, phlorhizin or phlorizoside) is a prominent member of the chemical class of dihydrochalcones, which are phenylpropanoids. The apple tree (Malus sp.) accumulates high amounts of phloridzin, whereas few other species contain this compound only in low amounts. Additionally, Malus sp. show a species- and tissue-specific distribution of phloridzin and its derivatives. Whereas the physiological role of phloridzin in planta is not fully understood, the effect on human health – especially diabetes – and membrane permeability is well documented. The biosynthesis of phloridzin was investigated only recently with recombinant enzymes and plant protein extracts and involved a NADPH-dependent dehydrogenase, chalcone synthase and UDP-glucose:phloretin 2′-O-glycosyltransferase.  相似文献   

14.
Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 35 were established by comparison with reported data. When tested in our cell-based assay at concentrations insignificantly toxic to T-cells, altertoxins V (1), I (3), II (4), and III (5) completely inhibited replication of the HIV-1 virus at concentrations of 0.50, 2.20, 0.30, and 1.50 μM, respectively. Our findings suggest that the epoxyperylene structural scaffold in altertoxins may be manipulated to produce potent anti-HIV therapeutics.  相似文献   

15.
The detailed investigation of endophytic Streptomyces sp. T1B1 was performed during a search for new structural and active compounds. The strain T1B1 was isolated from the old bast tissue of Taxus yunnanensis and determined to be a member of Streptomyces, according to the 16S rRNA analysis. The extracts from the PDA solid fermentation media of Streptomyces sp. T1B1 were purified and four β-lactones were isolated. They were identified as 4α-(3,5-dihydroxy hexyl)-3α-methyl-2-oxetanone (1), 4α-(3-methyl-4-formyloxy-hexyl)-3α-methyl-2-oxetanone (2), 4α-(3,5-dihydroxy-heptyl)-3α-methyl-2-oxetanone (3) and 4α-(3-methyl-4-formyloxy-heptyl)-3α-methyl-2-oxetanone (4) on the basis of spectral data.  相似文献   

16.
Experiments in vitro on everted sacs of rat small intestine have shown that phloretin (an inhibitor of basolatheral glucose GLUT2 transporter) added from mucosal side of the sacs decreases release of glucose from enterocytes into serosal fluid without changing glucose accumulation in tissue of the preparations. Addition of phloridzin (an inhibitor of Na+ and glucose co-transporter SGLT1) from mucosal side inhibited both glucose accumulation in the tissue and its release into serosal fluid. Unspecific effects of phloretin and phloridzin on activities of several digestive enzymes (in particular, alkaline phosphatase, amino peptidase, and glycyl-L-leucine dipeptidase) has been revealed in homogenates of the rat small intestine mucosa. In chronic experiments on rats, absorption of glycine from the isolated small intestinal loop was inhibited in the presence of phloretin in perfusate. The obtained results indicate that the experimental approach of inhibition of glucose absorption by phloretin used from mucosal side in vitro appears to give a significant overestimation of contribution of facilitated diffusion (with participation of the GLUT2 transporter inserted in the apical enterocyte membrane) to glucose transport across this membrane. Thus, the role of the GLUT2 transporter in the mechanism of glucose absorption in the small intestine under its physiological conditions does not seem to be as great as it is thought by the authors of the recently proposed hypothesis.  相似文献   

17.
Dihydrochalcones are plant secondary metabolites comprising molecules of significant commercial interest as antioxidants, antidiabetics, or sweeteners. To date, their heterologous biosynthesis in microorganisms has been achieved only by precursor feeding or as minor by-products in strains engineered for flavonoid production. Here, the native ScTSC13 was overexpressed in Saccharomyces cerevisiae to increase its side activity in reducing p-coumaroyl-CoA to p-dihydrocoumaroyl-CoA. De novo production of phloretin, the first committed dihydrochalcone, was achieved by co-expression of additional relevant pathway enzymes. Naringenin, a major by-product of the initial pathway, was practically eliminated by using a chalcone synthase from barley with unexpected substrate specificity. By further extension of the pathway from phloretin with decorating enzymes with known specificities for dihydrochalcones, and by exploiting substrate flexibility of enzymes involved in flavonoid biosynthesis, de novo production of the antioxidant molecule nothofagin, the antidiabetic molecule phlorizin, the sweet molecule naringin dihydrochalcone, and 3-hydroxyphloretin was achieved.  相似文献   

18.
Chemical analysis of the secondary metabolite pattern of the aeolid nudibranch Phyllodesmium magnum collected from the South China sea resulted in the isolation of eight sesquiterpenes, exhibiting very different structural features, which included one asteriscane (1), two africanane (2, 3), one elemane (4), two selinane (5, 6), and two furano- (7, 8) sesquiterpenes. Among them, compound 1, a new molecule, represents the fourth example of a rare asteriscane skeleton from a natural source, and the seven known sesquiterpenes (2-8) are new for P. magnum. The occurrence of the metabolites possessed by Phyllodesmium guamensis supports recent chemecological studies that it preys on the soft coral Sinularia sp., and uses these dietary chemicals as its defensive weapon.  相似文献   

19.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

20.
Amino acids and low-MW carbohydrates of 18 red algae have been analyzed. Several non-protein amino acids have been identified, including pyrrolidine-2,5-dicarboxylic acid (3c) and N-methylmethionine sulfoxide (5), new natural products, and 13 known compounds, citrulline, β-alanine, γ-aminobutyric acid, baikiain (1), pipecolic acid (2), domoic acid (3a), kainic acid (3b), azetidine-2-carboxylic acid (4), methionine sulfoxide taurine, N-methyltaurine, N,N-dimethyltaurine and N,N,N-trimethyltaurine. Sugars present were mainly floridoside, isofloridoside and mannoglyceric acid. Details of the structural elucidation of new compounds are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号