首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
CCM3, also named as PDCD10, is a ubiquitous protein expressed in nearly all tissues and in various types of cells. It is essential for vascular development and post‐natal vessel maturation. Loss‐of‐function mutation of CCM3 predisposes for the familial form of cerebral cavernous malformation (CCM). We have previously shown that knock‐down of CCM3 stimulated endothelial angiogenesis via impairing DLL4‐Notch signalling; moreover, loss of endothelial CCM3 stimulated tumour angiogenesis and promoted tumour growth. The present study was designed to further elucidate the inside signalling pathway involved in CCM3‐ablation‐mediated angiogenesis. Here we report for the first time that silencing endothelial CCM3 led to a significant up‐regulation of EphB4 mRNA and protein expression and to an increased kinase activity of EphB4, concomitantly accompanied by an activation of Erk1/2, which was reversed by treatment with the specific EphB4 kinase inhibitor NVP‐BHG712 (NVP), indicating that silencing CCM3 activates EphB4 kinase forward signalling. Furthermore, treatment with NVP rescued the hyper‐angiogenic phenotype induced by knock‐down of endothelial CCM3 in vitro and in vivo. Additional study demonstrated that the activation of EphB4 forward signalling in endothelial cells under basal condition and after CCM3‐silence was modulated by DLL4/Notch signalling, relying EphB4 at downstream of DLL4/Notch signalling. We conclude that angiogenesis induced by CCM3‐silence is mediated by the activation of EphB4 forward signalling. The identified endothelial signalling pathway of CCM3‐DLL4/Notch‐EphB4‐Erk1/2 may provide an insight into mechanism of CCM3‐ablation‐mediated angiogenesis and could potentially contribute to novel therapeutic concepts for disrupting aberrant angiogenesis in CCM and in hyper‐vascularized tumours.  相似文献   

4.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

5.
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.  相似文献   

6.
7.
8.
G protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of β–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of β–arrestin1 (at Ser412) bound to the receptor. Phosphorylated β‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that β‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling.  相似文献   

9.
The cellular inhibitor of apoptosis (c‐IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)‐mediated signalling. Through their E3 ligase activity c‐IAP proteins promote ubiquitination of receptor‐interaction protein 1 (RIP1), NF‐κB‐inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c‐IAP proteins, TNFR‐mediated activation of NF‐κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c‐IAP‐associated deubiquitinating enzyme that regulates c‐IAP1 stability. OTUB1 disassembles K48‐linked polyubiquitin chains from c‐IAP1 in vitro and in vivo within the TWEAK receptor‐signalling complex. Downregulation of OTUB1 promotes TWEAK‐ and IAP antagonist‐stimulated caspase activation and cell death, and enhances c‐IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK‐induced activation of canonical NF‐κB and MAPK signalling pathways and modulates TWEAK‐induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c‐IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF‐κB and MAPK signalling pathways and TNF‐dependent cell death by modulating c‐IAP1 stability.  相似文献   

10.
Although tumour PD‐L1 (CD274) expression had been used as a predictive biomarker in checkpoint immunotherapy targeting the PD1/PD‐L1 axis in various cancers, the regulation of PD‐L1 (CD274) expression is unclear. Yes‐associated protein (YAP), an important oncogenic protein in Hippo signalling pathway, reportedly promotes cancer development. We investigated whether inhibition of YAP down‐regulates PD‐L1 (CD274) in human malignant pleural mesothelioma (MPM). Western blotting showed that 2 human MPM cell lines (H2052 and 211H) had increased PD‐L1 protein expression compared to H290, MS‐1 and H28 cells. In H2052 and 211H cells, PD‐L1 mRNA expression was significantly increased compared to other MPM cell lines; YAP knockdown by small interfering RNA decreased PD‐L1 protein and mRNA expression. Forced overexpression of the YAP gene increased PD‐L1 protein expression in H2452 cells. Chromatin immunoprecipitation (ChIP) assay showed the precipitation of PD‐L1 enhancer region encompassing 2 putative YAP‐TEAD‐binding sites in H2052 cells. We found that, in human MPM tissue microarray samples, YAP and PD‐L1 concurrently expressed in immunohistochemistry stain (n = 70, P < .05, chi‐square). We conclude that PD‐L1 is correlated with YAP expression, and inhibition of YAP down‐regulates PD‐L1 expression in human MPM. Further study of how YAP regulates PD‐L1 in MPM is warranted.  相似文献   

11.
12.
13.
14.
15.
Major depressive and bipolar disorders are serious illnesses that affect millions of people. Growing evidence implicates glutamate signalling in depression, though the molecular mechanism by which glutamate signalling regulates depression‐related behaviour remains unknown. In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to depression‐related behaviour. The NR2A subunit of the NMDA receptor is tyrosine‐phosphorylated, with Tyr 1325 as its one of the major phosphorylation site. We have generated mice expressing mutant NR2A with a Tyr‐1325‐Phe mutation to prevent the phosphorylation of this site in vivo. The homozygous knock‐in mice show antidepressant‐like behaviour in the tail suspension test and in the forced swim test. In the striatum of the knock‐in mice, DARPP‐32 phosphorylation at Thr 34, which is important for the regulation of depression‐related behaviour, is increased. We also show that the Tyr 1325 phosphorylation site is required for Src‐induced potentiation of the NMDA receptor channel in the striatum. These data argue that Tyr 1325 phosphorylation regulates NMDA receptor channel properties and the NMDA receptor‐mediated downstream signalling to modulate depression‐related behaviour.  相似文献   

16.
The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.   相似文献   

17.
18.
19.
20.
Lung cancer is the leading cause of cancer‐related death globally, with non–small‐cell lung cancer (NSCLC) being the predominant subtype. Overall survival remains low for NSCLC patients, and novel targets are needed to improve outcome. Raf‐1 is a key component of the Ras/Raf/MEK signalling pathway, but its role and downstream targets in NSCLC are not completely understood. Our previous study indicated a possible correlation between Raf‐1 levels and ribosomal protein S6 kinase (p70S6K) function. In this study, we aimed to investigate whether p70S6K is a downstream target of Raf‐1 in NSCLC. Raf‐1 was silenced in NSCLC cell lines by using small hairpin RNA, and Raf‐1 and p70S6K protein levels were measured via Western blot. p70S6K was then overexpressed following Raf‐1 knock‐down; then, cell proliferation, apoptosis and the cell cycle in NSCLC cell lines were examined. Tumour xenografts with NSCLC cells were then transplanted for in vivo study. Tumours were measured and weighed, and Raf‐1 and p70S6K expression, cell proliferation and apoptosis were examined in tumour tissues by Western blot, Ki‐67 staining and TUNEL staining, respectively. When Raf‐1 was silenced, p70S6K protein levels were markedly decreased in the A549 and H1299 NSCLC cell lines. A significant decrease in NSCLC cell proliferation, a profound increase in apoptosis and cell cycle arrest were observed in vitro following Raf‐1 knock‐down. Overexpression of p70S6K after Raf‐1 depletion effectively reversed these effects. Xenograft studies confirmed these results in vivo. In conclusion, Raf‐1 targets p70S6K as its downstream effector to regulate NSCLC tumorigenicity, making Raf‐1/p70S6K signalling a promising target for NSCLC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号