首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses.  相似文献   

2.

Background

Risk assessment of tick-borne and zoonotic disease emergence necessitates sound knowledge of the particular microorganisms circulating within the communities of these major vectors. Assessment of pathogens carried by wild ticks must be performed without a priori, to allow for the detection of new or unexpected agents.

Methodology/Principal Findings

We evaluated the potential of Next-Generation Sequencing techniques (NGS) to produce an inventory of parasites carried by questing ticks. Sequences corresponding to parasites from two distinct genera were recovered in Ixodes ricinus ticks collected in Eastern France: Babesia spp. and Theileria spp. Four Babesia species were identified, three of which were zoonotic: B. divergens, Babesia sp. EU1 and B. microti; and one which infects cattle, B. major. This is the first time that these last two species have been identified in France. This approach also identified new sequences corresponding to as-yet unknown organisms similar to tropical Theileria species.

Conclusions/Significance

Our findings demonstrate the capability of NGS to produce an inventory of live tick-borne parasites, which could potentially be transmitted by the ticks, and uncovers unexpected parasites in Western Europe.  相似文献   

3.
4.
5.
Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.  相似文献   

6.
Babesia odocoilei-like parasites were first reported in 2003, and their virulence and hosts remain unknown. We report three cases of dogs with canine babesiosis in Iwate Prefecture. Since Iwate Prefecture area is an area of Japan where canine babesiosis is not endemic, we suspected that these cases of canine babesiosis were caused by B. odocoilei-like parasites. In the present study, we tried to identify the Babesia species that caused these cases of canine babesiosis. To classify Babesia parasites, the heat shock protein 70 (HSP70) gene was examined. Accordingly, we cloned and analyzed the HSP70 gene sequences of B. odocoilei-like parasites from three Ixodes ovatus ticks. It was determined that the nucleotide sequence of the HSP70 gene of the B. odocoilei-like parasites was not consistent with that of B. odocoilei, which suggests that these parasites were from a different species than B. odocoilei. Second, we identified the Babesia species that infected the three dogs by using the HSP70 gene and 18S rRNA. A partial HSP70 gene of B. odocoilei-like parasites was detected in the three dogs, but that of B. gibsoni was not detected. Additionally, a partial sequence of 18S rRNA of B. odocoilei-like parasites was detected in two dogs. These results demonstrated that two dogs were certainly infected with B. odocoilei-like parasites and that one dog was probably infected with B. odocoilei-like parasites. Therefore, these dogs were diagnosed with canine babesiosis due to the presence of B. odocoilei-like parasites. As there were only three cases, additional cases are needed to confirm our findings.  相似文献   

7.
The pathogenicity and morphology of a large Babesia species, Babesia sp. Xinjiang, are described here. The parasite has very low virulence for sheep, and caused no detectable clinical symptoms. Splenectomized sheep infected with the parasite showed mild fever and low parasitemia and would recover gradually. If splenectomized sheep were immuno-suppressed with dexamethasone, the parasitemia could reach 8.5%, and death occurred. A splenectomized calf could not be infected with the Babesia species. Paired parasites were the typical form of the Babesia species in erythrocytes and the average size of a pair of parasites was 2.42 (±0.35) μm × 1.06 (±0.22) μm. Merozoites were found in the gut, salivary gland, haemolymph, ovary and eggs of female Hyalomma anatolicum anatolicum engorged on sheep infected with the parasites. The results of experimental transmission showed that the larval, nymph and adult stages of H. a. anatolicum could transmit the Babesia species to sheep.  相似文献   

8.
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control.  相似文献   

9.
The Apicomplexa include parasites of devastating medical and economic consequence. While obviously essential for their parasitic mechanism, the molecular machinery underpinning membrane-trafficking in many apicomplexans is poorly understood. One potentially key set of players, the adaptins, selects cargo for incorporation into trafficking vesicles. Four distinct adaptin (AP) complexes exist in eukaryotes; AP1 and AP3 are involved in transport between the trans-Golgi Network (TGN) and endosomes, AP4 in TGN to cell surface transport, and AP2 in endocytosis from the cell surface. Of particular interest is the involvement of AP1 in Toxoplasma rhoptry biogenesis. The recent completion of several apicomplexan genomes should jump-start molecular parasitological studies and provide systems-level insight into the apicomplexan adaptin machinery. However, many of the encoded adaptin proteins are annotated conservatively and not to the necessary complex or subunit level. Prompted by previous evidence suggesting the lack of AP3 in Plasmodium falciparum, we undertook homology-searching and phylogenetic analysis to produce a rigorously annotated set of adaptin subunits encoded in diverse apicomplexan genomes. We found multiple losses of adaptins across the phylum; in particular Theileria, Babesia, and Cryptosporidium, but surprisingly not Plasmodium, appear to have lost the entirety of the AP3 complex. The losses correlate with a degenerate Golgi body structure and are reminiscent of recently reported secondary losses of additional endocytic components (i.e. the ESCRTs) in several Apicomplexa. These data may indicate a relaxation of the selective pressure on the apicomplexan endocytic system and, regardless, should greatly facilitate future molecular cell biological investigation of the role of adaptins in these important parasites.  相似文献   

10.
Animal models of human babesiosis have provided a basic understanding of the immunological mechanisms that clear, or occasionally exacerbate, Babesia infection and those pathological processes that cause disease complications. Human Babesia infection can cause asymptomatic infection, mild to moderate disease, or severe disease resulting in organ dysfunction and death. More than 100 Babesia species infect a wide array of wild and domestic animals, and many of the immunologic and pathologic responses to Babesia infection are similar in animals and humans. In this review, we summarize the knowledge gained from animal studies, their limitations, and how animal models or alternative approaches can be further leveraged to improve our understanding of human babesiosis.  相似文献   

11.
Babesia parasites cause a malaria‐like febrile illness by infection of red blood cells (RBCs). Despite the growing importance of this tick‐borne infection, its basic biology has been neglected. Using novel synchronization tools, the sequence of intra‐erythrocytic events was followed from invasion through development and differentiation to egress. The dynamics of the parasite population were studied in culture, revealing for the first time, the complete array of morphological forms in a precursor–product relationship. Important chronological constants including Babesia's highly unusual variable intra‐erythrocytic life cycle, the life span of each population of infected cells and the time required for the genesis of the different parasite stages were elucidated. Importantly, the maintenance of specific ratios of the infected RBC populations was shown to be responsible for the parasites' choice of developmental pathways, enabling swift responses to changing environmental conditions like availability of RBCs and nutrition. These results could impact the control of parasite proliferation and therefore disease.  相似文献   

12.
Concurrent infections with vector-borne pathogens affected a cattle herd in Switzerland, and one of the pathogens was identified as Babesia bigemina, which had never been observed in this country before. Therefore, a survey of the occurrence of ruminant Babesia spp. and their tick vectors in Switzerland was conducted. A total of 2,017 ticks were collected from sheep, goats, cattle, and wild ruminants (deer, roe deer, and chamois) in southern parts of Switzerland and identified morphologically. The vast majority of the ticks (99.2%) were Ixodes ricinus, but 14 ticks from sheep and goats were identified as Dermacentor marginatus and two ticks from wild ruminants were identified as Hemaphysalis punctata. PCR analyses of 700 ticks revealed the presence of Babesia divergens (n = 6), Babesia sp. genotype EU1 (n = 14), and B. major (n = 2), whose suggested occurrence was confirmed in this study by molecular analysis, and the presence of novel Babesia sp. genotype CH1 (n = 4), which is closely related to B. odocoilei and to Babesia sp. genotype RD61 reported from North America. The identification of B. divergens and B. major in ticks collected from wild ruminants cast doubt on the postulated strict host specificity of these bovine Babesia species. Furthermore, the zoonotic Babesia sp. genotype EU1 was detected in ticks collected from domestic animals but was obtained predominantly from ticks collected from wild ruminants. More than one tick containing DNA of different Babesia spp. were collected from two red deer. Hence, the role of these game animals as reservoir hosts of Babesia spp. seems to be important but requires further investigation.  相似文献   

13.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

14.
Microsporidia comprises a diverse group of obligate intracellular parasites that infect a broad range of invertebrates and vertebrates. Among Microsporidia, Enterocytozoon bieneusi is the most frequently detected species in humans and animals worldwide bringing into question the possible role of animal reservoirs in the epidemiology of this pathogen. Although E. bieneusi is an emerging zoonotic pathogen able to infect many domestic and wild mammals that could act as reservoir of infection for humans and other animals, only few studies have documented its occurrence in wild carnivores. To determine the occurrence of E. bieneusi in wild carnivores, we examined 190 wild carnivores collected from different locations in Spain. Twenty‐five fecal samples (13.2%) from three host species (European badger, beech marten, and red fox) were E. bieneusi‐positive by PCR. Nucleotide sequence analysis of the ITS region revealed a high degree of genetic diversity with a total of eight distinct genotypes including four known (PtEbIX, S5, S9, and WildBoar3) and four novel (EbCar1‐EbCar4) genotypes identified. Phylogenetic analysis showed that the four novel genotypes (EbCar1‐EbCar4), S5, S9, and WildBoar3 clustered within the previously designated zoonotic Group 1. Our results demonstrate that human‐pathogenic genotypes are present in wild carnivores, corroborating their potential role as a source of human infection and environmental contamination.  相似文献   

15.
Babesiosis is a potentially fatal tick-borne zoonotic disease caused by a species complex of blood parasites that can infect a variety of vertebrates, particularly dogs, cattle, and humans. In the United States, human babesiosis is caused by two distinct parasites, Babesia microti and Babesia duncani. The enzootic cycle of B. microti, endemic in the northeastern and upper midwestern regions, has been well characterised. In the western United States, however, the natural reservoir host and tick vector have not been identified for B. duncani, greatly impeding efforts to understand and manage this zoonotic disease. Two and a half decades after B. duncani was first described in a human patient in Washington State, USA, we provide evidence that the enzootic tick vector is the winter tick, Dermacentor albipictus, and the reservoir host is likely the mule deer, Odocoileus hemionus. The broad, overlapping ranges of these two species covers a large portion of far-western North America, and is consistent with confirmed cases of B. duncani in the far-western United States.  相似文献   

16.
Beef cattle production represents the largest cattle population in Thailand. Their productivity is constrained by tick-borne diseases such as babesiosis and theileriosis. In this study, we determined the prevalence of Babesia bigemina, Babesia bovis and Theileria orientalis using polymerase chain reaction (PCR). The genetic markers that were used for detection of the above parasites were sequenced to determine identities and similarity for Babesia spp. and genetic diversity of T. orientalis. Furthermore the risk factors for the occurrence of the above protozoan parasites in beef cattle from northern and northeastern parts of Thailand were assessed. A total of 329 blood samples were collected from beef cattle in 6 provinces. The study revealed that T. orientalis was the most prevalent (30.1%) parasite in beef cattle followed by B. bigemina (13.1%) and B. bovis (5.5%). Overall, 78.7% of the cattle screened were infected with at least one of the above parasites. Co-infection with Babesia spp. and T. orientalis was 30.1%. B. bigemina and T. orientalis were the most prevalent (15.1%) co-infection although triple infection with the three parasites was observed in 3.0% of the samples. Sequencing analysis revealed that B. bigemina RAP1 gene and B. bovis SBP2 gene were conserved among the parasites from different cattle samples. Phylogenetic analysis showed that the T. orientalis MPSP gene from parasites isolated from cattle in north and northeast Thailand was classified into types 5 and 7 as reported previously. Lack of tick control program was the universal risk factor of the occurrence of Babesia spp. and T. orientalis infection in beef cattle in northern and northeastern Thailand. We therefore recommend training of farmers on appropriate tick control strategies and further research on potential vectors for T. orientalis and elucidate the effect of co-infection with Babesia spp. on the pathogenicity of T. orientalis infection on beef in northern and northeastern Thailand.  相似文献   

17.
Irvin A. D. and Young E. R. 1979. Further studies on the uptake of tritiated nucleic acid precursors by Babesia spp. of cattle and mice. International Journal for Parasitology9: 109–114. An in vitro culture technique developed earlier was used to study the metabolism of nucleic acid precursors by Babesia microti and B. rodhaini of mice and by B. divergens and B. major of cattle. [3H]Hypoxanthine was readily incorporated by all species of parasite, and the presence of leucocytes did not affect this uptake. When parasites were maintained in culture their ability to incorporate [3H]hypoxanthine fell rapidly after 24 h, but when B. major was maintained at 4°C its subsequent ability to incorporate [3H]hypoxanthine persisted for at least 3 days. This finding could be of practical value in assessing infectivity of stored blood in vitro.On autoradiography, [3H]hypoxanthine appeared to be incorporated into both DNA and RNA of parasites. Salvage pathways for purine metabolism appeared to be important in all species of Babesia whereas for pyrimidine metabolism salvage pathways were more important for murine babesias and the de novo pathway more important for bovine species. This difference may relate to different permeabilities of bovine and murine erythrocyte membranes or may be a more fundamental species difference.  相似文献   

18.
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.  相似文献   

19.
The sika deer (Cervus nippon) is one of the most common species of wildlife in Japan. This study aimed to reveal the prevalence of tick-borne protozoan parasites in wild sika deer living in western Japan. We used nested polymerase chain reaction (PCR) to detect the 18S rRNA gene of tick-borne apicomplexan parasites (Babesia, Theileria, and Hepatozoon spp.) from 276 blood and liver samples from sika deer captured in the Yamaguchi, Oita, Kagoshima, Okayama, Ehime, Kochi, and Tokushima Prefectures. In total, 259 samples (259/276; 93.8%) tested positive in the nested PCR screening. Gene sequencing revealed that 99.6% (258/259) of positive samples contained Theileria sp. (sika 1), while Theileria sp. (sika 2), another Theileria species, was detected in only 3 samples. We also found that one sample from a sika deer captured in Kagoshima contained the gene of an unidentified Babesia sp. related to Babesia sp. Kh-Hj42, which was previously collected from tick in western Siberia. In conclusion, we found a high prevalence of piroplasms in sika deer from western Japan, and DNA analysis revealed that Theileria sp. (sika 1) had the highest infection rate.  相似文献   

20.
The DNA of Babesia spp. parasites within host intact red blood cells was labeled using the fluorescent bisbenzimidazole dye 33258 Hoechst. The labeled cells were sorted on a fluorescence activated cell sorter on the basis of cell fluorescence (proportional to DNA content) and the intensity of light scattered from the cells at low angles (related to cell size). The optimal conditions for dye uptake were established for the murine parasite Babesia rodhaini and the bovine parasites B. bovis and B. bigemina. Uninfected cells were nonfluorescent after incubation with the dye and could be completely separated from infected fluorescent cells. The fluorescence of cells infected with B. rodhaini was proportional to the number of parasite nuclei per cell. With saturation levels of dye, samples infected with B. bovis or B. bigemina in which erythrocytes contained one or two parasites, both exhibited only one fluorescent cell peak. Cell sorting did not eliminate the infectivity of B. rodhaini. The method may be used to separate populations of uninfected blood cells and cells infected with Babesia spp. for biochemical and immunochemical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号