首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We tested the hypothesis that distributions of Mexican bats are defined by shared responses to environmental gradients for the entire Mexican bat metacommunity and for each of four metaensembles (frugivores, nectarivores, gleaning insectivores, and aerial insectivores). Further, we identified the main environmental factors to which bats respond for multiple spatial extents. Location Mexico. Methods Using bat presence–absence data, as well as vegetation composition for each of 31 sites, we analysed metacommunity structure via a comprehensive, hierarchical approach that uses reciprocal averaging (RA) to detect latent environmental gradients corresponding to each metacommunity structure (e.g. Clementsian, Gleasonian, nested, random). Canonical correspondence analysis (CCA) was used to relate such gradients to variation in vegetation composition. Results For all bat species and for each ensemble, the primary gradient of ordination from RA, which is based on species data only, recovered an axis of humidity that matched that obtained for the first axis of the CCA ordination, which is based both on vegetation attributes and on species composition of sites. For the complete assemblage as well as for aerial and gleaning insectivores, analyses revealed Clementsian or quasi‐Clementsian structures with discrete compartments (distinctive groups of species along portions of an environmental gradient) coincident with the humidity gradient and with the Nearctic–Neotropical divide. Within‐compartment analysis further revealed Clementsian or quasi‐Clementsian structures corresponding to a gradient of elevational complexity that matched the second ordination axis in CCA. Frugivores had quasi‐nested structure, whereas nectarivores had Gleasonian structure. Main conclusions Our hierarchical approach to metacommunity analysis detected complex metacommunity structures associated with multiple environmental gradients at different spatial extents. More importantly, the resulting structures and their extent along environmental gradients are determined by ensemble‐specific characteristics and not by arbitrarily circumscribed study areas. This property renders compartment‐level analyses particularly useful for large‐scale ecological analyses in areas where more than one gradient may exist and species sorting may occur at multiple scales.  相似文献   

2.
3.
The metacommunity concept provides important insights into large‐scale patterns and dynamics of distributions of interacting species. However, temporal change of metacommunity structure is little studied and has not been previously analysed in the context of biodiversity change. As metacommunity structure is determined by multiple species distributions, it is expected to change as a result of biodiversity loss. To examine this process, we analysed structural change of a southern English woodland metacommunity at two points in time, seven decades apart. During this interval, the metacommunity lost β‐diversity through taxonomic homogenization. We performed an ‘elements of metacommunity structure’ (EMS) analysis to examine metacommunity structure, based upon three structural elements: coherence (i.e. gaps in species range along a structuring gradient), spatial turnover (replacements), and species range boundary clumping. We predicted that metacommunity structure would decrease in spatial turnover and thus become more nested over time. We tested for change in individual structural elements with z‐scores and examined the role of spatial and environmental variables as potential structuring mechanisms through correlation with EMS ordination axes. Our results demonstrated that the metacommunity had a Clementsian structure that was maintained over time. Despite no change in broad structure, coherence and species range boundary clumping increased. Spatial turnover increased along the first structuring gradient but decreased on the second gradient. We hypothesise that this difference between gradients may reflect the presence of competing processes affecting spatial turnover. The mechanisms of biological structuring involved both environmental and spatial factors at the scale of the individual woodland. Therefore, our results suggest that broad metacommunity structure would not be a good landscape‐scale indicator for conservation status. Conversely, knowledge that metacommunity structure does not change over time could assist in long‐term conservation strategy because fundamental metacommunity structural processes are resistant to environmental change.  相似文献   

4.
5.
Elevational gradients provide a natural experiment for assessing the extent to which the structure of animal metacommunities is molded by biotic and abiotic characteristics that change gradually, or is molded by aspects of plant community composition and physiognomy that change in a more discrete fashion. We used a metacommunity framework to integrate species‐specific responses to environmental gradients as an approach to detect emergent patterns at the mesoscale in the Luquillo Mountains of Puerto Rico. Elements of metacommunity structure (coherence, species turnover and range boundary clumping) formed the basis for distinguishing among random, checkerboard, Gleasonian, Clementsian, evenly spaced and nested patterns. Paired elevational transects (300–1000 m a.s.l.) were sampled at 50 m intervals to decouple underlying environmental mechanisms: a mixed forest transect reflected changes in abiotic and biotic conditions, including forest type (i.e. tabonuco, palo colorado and elfin forests), whereas another transect reflected changes in environmental conditions but not forest type, as its constituent plots were located within palm forest. Based on distributional data (presence versus absence of species), the mixed forest transect exhibited Clementsian structure, whereas the palm forest transect exhibited quasi‐Gleasonian structure. In contrast, the distribution of modes in species abundance was random with respect to the latent environmental gradient in the mixed forest transect and clumped with respect to the latent environmental gradient in the palm forest transect. Such contrasts suggest that the environmental factors affecting abundance differed in form or type from those affecting distributional boundaries. Variation among elevational strata with respect to the first axis of correspondence from reciprocal averaging was highly correlated with elevation along each transect, even though axis scores were not correlated between mixed forest and palm forest transects. This suggests that the identity of the environmental characteristics, or the form of response by the fauna to those characteristics, differed between the two elevational transects. Despite the proximity of the transects, the patchy configuration of palm forest, and the pervasive distribution of the dominant palm species, the relative importance of abiotic variables and habitat in structuring gastropod metacommunities differed between transects, which is remarkable and attests to the sensitivity of metacommunity structure to environmental variation.  相似文献   

6.
7.
Most studies characterize metacommunities based on a single snapshot of the spatial structure, which may be inadequate for taxa with high migratory behavior (e.g., fish). Here, we applied elements of metacommunity structure to examine variations in the spatial distributions of stream fishes over time and to explore possible structuring mechanisms. Although the major environmental gradients influencing species distributions remained largely the same in time, the best-fit pattern of metacommunity structure varied according to sampling occasion and whether or not we included non-native species in the analyses. Quasi-Clementsian and Clementsian structures were the predominant best-fit structures, indicating the importance of species turnover among sites and the existence of more or less discrete community boundaries. The environmental gradient most correlated with metacommunity structure was defined by altitude, area of artificial ponds in the catchment, and dissolved oxygen content. Our results suggest that the best-fit metacommunity structure of the native species can change in time in this catchment due to seasonal changes in distribution patterns. However, the distribution of non-native species throughout the landscape homogenizes the temporal variability in metacommunity structure of native species. Further studies are necessary from other regions to examine best-fit metacommunity structures of stream fishes within relatively short environmental gradients.  相似文献   

8.
Fungi are key organisms in terrestrial ecosystems, functioning as decomposers, pathogens, and symbionts. Identifying the mechanisms that shape metacommunity patterns is likely to be critical for predicting how ecosystems will respond to global environmental change. Using fungal occurrence data and a hierarchical approach that combines three elements of metacommunity structure—coherence, turnover and boundary clumping—we identified the structures that best describe metacommunity patterns. We related these patterns to underlying environmental and spatial variables known to influence fungal distribution, and determined the relative importance of the environment and geographic distance in structuring fungal metacommunities. Fungal metacommunities had Clementsian and quasi-Clementsian structures, indicating that species distributions were compartmentalized along a dominant environmental gradient. This gradient was strongly associated with annual precipitation, precipitation seasonality and pH for the entire metacommunity. Variance partitioning revealed that the environment was relatively more important than geographic distance in explaining metacommunity patterns, indicating that niche-based processes are crucial in shaping species distributions among sites. However, the strength of the relationship between the latent gradient and environmental factors and the relative contributions of the environment and geographic distance to metacommunity structure varied across groups, suggesting that interactions among habitat, dispersal and life-history might be driving these differences.  相似文献   

9.
Tad Dallas  Steven J. Presley 《Oikos》2014,123(7):866-874
Identification of mechanisms that shape parasite community and metacommunity structures have important implications to host health, disease transmission, and the understanding of community assembly in general. Using a long‐term dataset on parasites from desert rodents, we examined the relative contributions of host traits that represent important aspects of parasite environment, transmission probability between host species, and host phylogeny to the structure of a parasite metacommunity as well as for taxonomically restricted parasite metacommunities (coccidians, ectoparasites and helminths). This was done using a combination of metacommunity analysis and variance partitioning based on canonical correspondence analysis. Coccidian and ectoparasite metacommunities did not exhibit coherent structure. In contrast, helminths and the full parasite metacommunity had Clementsian and quasi‐Clementsian structure, respectively, indicating that parasite species distributions for these metacommunities were compartmentalized along a dominant gradient. Variance decomposition indicated that characteristics associated with the host environment consistently explained more variation than did host traits associated with transmission opportunities or host phylogeny, indicating that the host environment is primary in shaping parasite species distributions among host species. Moreover, the importance of different types of host traits in structuring parasite metacommunities was consistent among taxonomic groups (i.e. full metacommunity, coccidians, and helminths) despite manifest differences in emergent structures (i.e. Clementsian, quasi‐Clementsian, and random) that arose in response to variation in host environment.  相似文献   

10.
Techniques to evaluate elements of metacommunity structure (EMS; coherence, species turnover and range boundary clumping) have been available for several years. Such approaches are capable of determining which idealized pattern of species distribution best describes distributions in a metacommunity. Nonetheless, this approach rarely is employed and such aspects of metacommunity structure remain poorly understood. We expanded an extant method to better investigate metacommunity structure for systems that respond to multiple environmental gradients. We used data obtained from 26 sites throughout Paraguay as a model system to demonstrate application of this methodology. Using presence–absence data for bats, we evaluated coherence, species turnover and boundary clumping to distinguish among six idealized patterns of species distribution. Analyses were conducted for all bats as well as for each of three feeding ensembles (aerial insectivores, frugivores and molossid insectivores). For each group of bats, analyses were conducted separately for primary and secondary axes of ordination as defined by reciprocal averaging. The Paraguayan bat metacommunity evinced Clementsian distributions for primary and secondary ordination axes. Patterns of species distribution for aerial insectivores were dependent on ordination axis, showing Gleasonian distributions when ordinated according to the primary axis and Clementsian distributions when ordinated according to the secondary axis. Distribution patterns for frugivores and molossid insectivores were best described as random. Analysis of metacommunities using multiple ordination axes can provide a more complete picture of environmental variables that mold patterns of species distribution. Moreover, analysis of EMS along defined gradients (e.g., latitude, elevation and depth) or based on alternative ordination techniques may complement insights based on reciprocal averaging because the fundamental questions addressed in analyses are contingent on the ordination technique that is employed.  相似文献   

11.
The metacommunity framework has greatly advanced our understanding about the importance of local and regional processes structuring ecological communities. However, information on how metacommunity structure and the relative strengths of their underlying mechanisms change through time is largely lacking. Dynamic systems that undergo environmental temporal changes and disturbances, such as floodplains, serve as natural laboratories to explore how their metacommunity structure change in time. Here we applied the Elements of Metacommunity Structure framework and variation partitioning analysis to assess how temporal changes in the local environmental factors and regional dispersal processes in the rain season influence a seasonal floodplain‐fish metacommunity. Across four months, relevant environmental factors were measured across 21 patches where over 3500 individual fish were sampled. Connectivity was measured using landscape resistance‐based metrics and additional spatial variation in metacommunity structure was assessed via spatial autocorrelation functions. The metacommunity structure changed from nestedness, at the beginning of the flood season, to a quasi‐Clementsian gradient at the end. Our analyses show that connectivity is only important in the beginning of the flood season whereas environment is only important at the end. These results suggest that this metacommunity is structured by changes between dispersal limitation and environmental filtering through time.  相似文献   

12.
The metacommunity framework integrates species‐specific responses to environmental gradients to detect emergent patterns of mesoscale organization. Abiotic characteristics (temperature, precipitation) and associated vegetation types change with elevation in a predictable fashion, providing opportunities to decouple effects of environmental gradients per se from those of biogeographical or historical origin. Moreover, expected structure is different if a metacommunity along an elevational gradient is molded by idiosyncratic responses to abiotic variables (expectation=Gleasonian structure) than if such a metacommunity is molded by strong habitat preferences or specializations (expectation=Clementsian structure). We evaluated metacommunity structure for 13 species of gastropod from 15 sites along an elevational transect in the Luquillo Experimental Forest of Puerto Rico. Analyses were conducted separately for the primary axis and for the secondary axis of correspondence extracted via reciprocal averaging. The metacommunity exhibited quasi‐Clementsian structure along the primary axis, which represented a gradient of gastropod species specialization that was unassociated with elevation. The secondary axis represented environmental variation associated with elevation. Along this axis, the metacommunity exhibited Clementsian structure, with specialists characterizing each of three suites of sites that corresponded to three distinct forest types. These forest types are associated with low (tabonuco forest), mid‐ (palo colorado forest), or high (elfin forest) elevations. Thus, variation among sites in species composition reflected two independent processes: the first decoupled from elevational variation and its environmental correlates, and the second highly associated with environmental variation correlated with elevation. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

13.
Most metacommunity studies have taken a direct mechanistic approach, aiming to model the effects of local and regional processes on local communities within a metacommunity. An alternative approach is to focus on emergent patterns at the metacommunity level through applying the elements of metacommunity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has very rarely been applied in the context of a comparative analysis of metacommunity types of main microbial, plant, and animal groups. Furthermore, to our knowledge, no study has associated metacommunity types with their potential ecological correlates in the freshwater realm. We assembled data for 45 freshwater metacommunities, incorporating biologically highly disparate organismal groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first examined ecological correlates (e.g., matrix properties, beta diversity, and average characteristics of a metacommunity, including body size, trophic group, ecosystem type, life form, and dispersal mode) of the three elements of metacommunity structure (i.e., coherence, turnover, and boundary clumping). Second, based on those three elements, we determined which metacommunity types prevailed in freshwater systems and which ecological correlates best discriminated among the observed metacommunity types. We found that the three elements of metacommunity structure were not strongly related to the ecological correlates, except that turnover was positively related to beta diversity. We observed six metacommunity types. The most common were Clementsian and quasi‐nested metacommunity types, whereas Random, quasi‐Clementsian, Gleasonian, and quasi‐Gleasonian types were less common. These six metacommunity types were best discriminated by beta diversity and the first axis of metacommunity ecological traits, ranging from metacommunities of producer organisms occurring in streams to those of large predatory organisms occurring in lakes. Our results showed that focusing on the emergent properties of multiple metacommunities provides information additional to that obtained in studies examining variation in local community structure within a metacommunity.  相似文献   

14.
Abstract.  1. Several non-random patterns in the distribution of species have been observed, including Clementsian gradients, Gleasonian gradients, nestedness, chequerboards, and evenly spaced gradients. Few studies have examined these patterns simultaneously, although they have often been studied in isolation and contrasted with random distribution of species across sites.
2. This study examined whether assemblages of chironomid midges exhibit any of the idealised distribution patterns as opposed to random distribution of species across sites within the metacommunity context in a boreal drainage system. Analyses were based on stream surveys conducted during three consecutive years. Analytical approaches included ordinations, cluster analysis, null models, and associated randomisation methods.
3. Midge assemblages did not conform to Clementsian gradients, which was evidenced by the absence of clearly definable assemblage types with numerous species exclusive to each assemblage type. Rather, there were signs of continuous Gleasonian variability of assemblage composition, as well as significant nested subset patterns of species distribution.
4. Midge assemblages showed only weak relationships with any of the measured environmental variables, and even these weak environmental relationships varied among years.
5. Midge assemblages did not appear to be structured by competition. This finding was somewhat problematic, however, because the two indices measuring co-occurrence provided rather different signs of distribution patterns. This was probably a consequence of how they actually measure co-occurrence.
6. Although midge assemblages did not show a perfect match with any of the idealised distribution patterns, they nevertheless showed a resemblance to the empirical patterns found previously for several plant and animal groups.  相似文献   

15.
Aim We evaluated the structure of metacommunities for each of three vertebrate orders (Chiroptera, Rodentia and Passeriformes) along an extensive elevational gradient. Using elevation as a proxy for variation in abiotic characteristics and the known elevational distributions of habitat types, we assessed the extent to which variation in those factors may structure each metacommunity based on taxon‐specific characteristics. Location Manu Biosphere Reserve in the Peruvian Andes. Methods Metacommunity structure is an emergent property of a set of species distributions across geographic or environmental gradients. We analysed elements of metacommunity structure (coherence, range turnover and range boundary clumping) to determine the best‐fit structure for each metacommunity along an elevational gradient comprising 13 250‐m elevational intervals and 58 species of rodent, 92 species of bat or 586 species of passerine. Results For each taxon, the environmental gradient along which the metacommunity was structured was highly correlated with elevation. Clementsian structure (i.e. groups of species replacing other such groups along the gradient) characterized rodents, with a group of species that was characteristic of rain forests and a group of species that was characteristic of higher elevation habitats (i.e. above 1500 m). Distributions of bats were strongly nested, with more montane communities comprising subsets of species at lower elevations. The structure of the passerine metacommunity was complex and most consistent with a quasi‐Clementsian structure. Main conclusions Each metacommunity exhibited a different structure along the same elevational gradient, and each structure can be accounted for by taxon‐specific responses to local environmental factors that vary predictably with elevation. The structures of rodent and bird metacommunities suggest species sorting associated with habitat specializations, whereas structure of the bat metacommunity is probably moulded by a combination of species‐specific tolerances to increasingly cold, low‐productivity environs of higher elevations and the diversity and abundance of food resources associated with particular habitat types.  相似文献   

16.
17.
The metacommunity concept, describing how local and regional scale processes interact to structure communities, has been successfully applied to patterns of taxonomic diversity. Functional diversity has proved useful for understanding local scale processes, but has less often been applied to understanding regional scale processes. Here, we explore functional diversity patterns within a metacommunity context to help elucidate how local and regional scale processes influence community assembly. We detail how each of the four metacommunity perspectives (species sorting, mass effects, patch dynamics, neutral) predict different patterns of functional beta‐ and alpha‐diversity and spatial structure along two key gradients: dispersal limitation and environmental conditions. We then apply this conceptual model to a case study from alpine tundra plant communities. We sampled species composition in 17 ‘sky islands’ of alpine tundra in the Colorado Rocky Mountains, USA that differed in geographic isolation and area (key factors related to dispersal limitation) and temperature and elevation (key environmental factors). We quantified functional diversity in each site based on specific leaf area, leaf area, stomatal conductance, plant height and chlorophyll content. We found that colder high elevation sites were functionally more similar to each other (decreased functional beta‐diversity) and had lower functional alpha‐diversity. Geographic isolation and area did not influence functional beta‐ or alpha‐diversity. These results suggest a strong role for environmental conditions structuring alpine plant communities, patterns consistent with the species sorting metacommunity perspective. Incorporating functional diversity into metacommunity theory can help elucidate how local and regional factors structure communities and provide a framework for observationally examining the role of metacommunity dynamics in systems where experimental approaches are less tractable.  相似文献   

18.
A fundamental goal of ecology is to understand the factors that influence community structure and, consequently, generate heterogeneity in species richness across habitats. While niche‐assembly (e.g. species‐sorting) and dispersal‐assembly mechanisms are widely recognized as factors structuring communities, there remains substantial debate concerning the relative importance of each of these mechanisms. Using freshwater snails as a model system, we explore how abiotic and biotic factors interact with dispersal to structure local communities and generate regional patterns in species richness. Our data set consisted of 24 snail species from 43 ponds and lakes surveyed for seven years on the Univ. of Michigan's E. S. George Reserve and Pinckney State Recreation Area near Ann Arbor, Michigan. We found that heterogeneity in habitat conditions mediated species‐sorting mechanism to drive patterns in snail species richness across sites. In particular, physical environmental variables (i.e. habitat area, hydroperiod, and canopy cover), pH, and fish presence accounted for the majority of variation in the species richness across sites. We also found evidence of Gleasonian structure (i.e. significant species turnover with stochastic species loss) in the metacommunity. Turnover in snail species distributions was driven by the replacement of several pulmonate species with prosobranch species at the pond permanence transition. Turnover appeared to be driven by physiological constraints associated with differences in respiration mode between the snail orders and shell characteristics that deter molluscivorous fish. In contrast to these niche‐assembly mechanisms, there was no evidence that dispersal‐assembly mechanisms were structuring the communities. This suggests that niche‐assembly mechanisms are more important than dispersal‐assembly mechanisms for structuring local snail communities.  相似文献   

19.
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species–energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale‐dependent nature of soil biodiversity.  相似文献   

20.
The elements of metacommunity structure (EMS) framework gives rise to important ecological insights through the distinction of metacommunities into several different idealised structures. We examined the EMS in assemblages occupying a low-mountain river system in central Germany, sampled over three consecutive years. We compared the idealised distributions of assemblages in both the riparian floodplain zone (carabid beetles and spiders) and the benthic instream environment (benthic invertebrates). We further deconstructed instream organisms into taxonomic and trait groups to examine whether greater signal emerges in more similar species groups. We found little evidence of strong competition, even for trait-modality groups, and nestedness was almost non-existent. In addition to random distributions, Gleasonian distributions (indicating clear, but individualistic turnover between sites) were the most commonly identified structure. Clear differences were apparent between different trait groups, particularly between within-trait modalities. These were most evident for different dispersal modes and life cycle durations, with strong dispersers showing possible signs of mass effects. While random distributions may have partly reflected small sample sizes, clearly coherent patterns were evident for many groups, indicating a sufficient gradient in environmental conditions. The prevalence of random distributions suggests many species are responding to a variety of environmental filters in these river-floodplain metacommunities in an anthropogenically-dominated landscape, whereas Gleasonian distributions indicate species are responding idiosyncratically to a primary environmental gradient. Our findings further emphasise the prevalence of context dependency (spatio-temporal variability) in metacommunity studies, thus we stress the need to further disentangle the causes of such variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号