共查询到20条相似文献,搜索用时 8 毫秒
1.
《Journal of molecular biology》2023,435(5):167971
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1, 2, 3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4, 5, 6, 7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ~25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates. 相似文献
2.
《Journal of molecular biology》2021,433(12):166794
Appreciation for the role of liquid–liquid phase separation in the functional organization of cellular matter has exploded in recent years. More recently there has been a growing effort to understand the principles of heterotypic phase separation, the demixing of multiple proteins and nucleic acids into a single functional condensate. A phase transition is termed reentrant if it involves the transformation of a system from one state into a macroscopically similar or identical state via at least two phase transitions elicited by variation of a single parameter. Reentrant liquid–liquid phase separation can occur when the condensation of one species is tuned by another. Reentrant phase transitions have been modeled in vitro using protein and RNA mixtures. These biochemical studies reveal two features of reentrant phase separation that are likely important to functional cellular condensates: (1) the ability to generate condensates with layered functional topologies, and (2) the ability to generate condensates whose composition and duration are self-limiting to enable a form of biochemical timekeeping. We relate these biochemical studies to potential cellular examples and discuss how layered topologies and self-regulation may impact key biological processes. 相似文献
3.
4.
《Cell》2022,185(20):3823-3837.e23
5.
《Journal of molecular biology》2022,434(1):167201
The transition between the native and amyloid states of proteins can proceed via a deposition pathway via oligomeric intermediates or via a condensation pathway involving liquid droplet intermediates generated through liquid-liquid phase separation. While several computational methods are available to perform sequence-based predictions of the propensity of proteins to aggregate via the deposition pathway, much less is known about the physico-chemical principles that underlie aggregation within condensates. Here we investigate the sequence determinants of aggregation via the condensation pathway, and identify three relevant features: droplet-promoting propensity, aggregation-promoting propensity and multimodal interactions quantified by the binding mode entropy. By using this approach, we show that it is possible to predict aggregation-promoting mutations in droplet-forming proteins associated with amyotrophic lateral sclerosis (ALS). This analysis provides insights into the amino acid code for the conversion of proteins between liquid-like and solid-like condensates. 相似文献
6.
7.
8.
Hui Zheng Hong Zhang 《BioEssays : news and reviews in molecular, cellular and developmental biology》2024,46(3):2300203
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties – including concentration, sequence, length and structure – also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies. 相似文献
9.
In response to the recent SARS-CoV-2 pandemic, a number of labs across the world have reallocated their time and resources to better our understanding of the virus. For some viruses, including SARS-CoV-2, viral proteins can undergo phase separation: a biophysical process often related to the partitioning of protein and RNA into membraneless organelles in vivo. In this review, we discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein—an essential viral protein required for viral replication—and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection. Additionally, since a relatively large number of studies examining SARS-CoV-2 N-protein phase separation have been published in a short span of time, we take advantage of this situation to compare results from similar experiments across studies. Our evaluation highlights potential strengths and pitfalls of drawing conclusions from a single set of experiments, as well as the value of publishing overlapping scientific observations performed simultaneously by multiple labs. 相似文献
10.
Mechanistic View of hnRNPA2 Low-Complexity Domain Structure,Interactions, and Phase Separation Altered by Mutation and Arginine Methylation 总被引:1,自引:0,他引:1
Veronica H. Ryan Gregory L. Dignon Gül H. Zerze Charlene V. Chabata Rute Silva Alexander E. Conicella Joshua Amaya Kathleen A. Burke Jeetain Mittal Nicolas L. Fawzi 《Molecular cell》2018,69(3):465-479.e7
11.
12.
《Journal of molecular biology》2021,433(10):166948
Liquid-liquid phase separation (LLPS) of proteins is involved in a growing number of cellular processes. Most proteins with LLPS harbor intrinsically disordered regions (IDR), which serve as a guideline to search for cellular proteins that potentially phase separate. Herein, we reveal that oligomerization lowers the barriers for LLPS and could act as a general mechanism to enhance LLPS of proteins domains independent of IDR. Using TDP43 as a model system, we found that deleting its IDR resulted in LLPS that was dependent on the oligomerization of the N-terminal domain (NTD). Replacing TDP43′s NTD with other oligomerization domains enhanced the LLPS proportionately to the state of oligomerization. In addition to TDP43, fusing NTD to other globular proteins without known LLPS behavior also drove their phase separation in a manner dependent on oligomerization. Finally, we demonstrate that heterooligomers composed of NTD-fused proteins can be driven into droplets through NTD interactions. Our results potentiate a new paradigm for using oligomerization domains as a signature to systematically identify cellular proteins with LLPS behavior, thus broadening the scope of this exciting research field. 相似文献
13.
《Journal of molecular biology》2022,434(1):167348
The emergence of biomolecular condensation and liquid–liquid phase separation (LLPS) introduces a new layer of complexity into our understanding of cell and molecular biology. Evidence steadily grows indicating that condensates are not only implicated in physiology but also human disease. Macro- and mesoscale characterization of condensates as a whole have been instrumental in understanding their biological functions and dysfunctions. By contrast, the molecular level characterization of condensates and how condensates modify the properties of the molecules that constitute them thus far remain comparably scarce. In this minireview we summarize and discuss the findings of several recent studies that have focused on structure, dynamics, and interactions of proteins undergoing condensation. The mechanistic insights they provide help us identify the relevant properties nature and scientists can leverage to modulate the behavior of condensate systems. We also discuss the unique environment of the droplet surface and speculate on effects of topological constraints and physical exclusion on condensate properties. 相似文献
14.
A central tenet of molecular biology is that heritable information is stored in nucleic acids. However, this paradigm has been overturned by a group of proteins called “prions.” Prion proteins, many of which are intrinsically disordered, can adopt multiple conformations, at least one of which has the capacity to self-template. This unusual folding landscape drives a form of extreme epigenetic inheritance that can be stable through both mitotic and meiotic cell divisions. Although the first prion discovered—mammalian PrP—is the causative agent of debilitating neuropathies, many additional prions have now been identified that are not obviously detrimental and can even be adaptive. Intrinsically disordered regions, which endow proteins with the bulk property of “phase-separation,” can also be drivers of prion formation. Indeed, many protein domains that promote phase separation have been described as prion-like. In this review, we describe how prions lie at the crossroads of phase separation, epigenetic inheritance, and evolutionary adaptation. 相似文献
15.
Eukaryotic cells are known to contain a wide variety of RNA–protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA–RNA, protein–RNA, and protein–protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein–protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid–liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell. 相似文献
16.
17.
Anton Zilman 《Journal of molecular biology》2018,430(23):4730-4740
Nuclear pore complex (NPC) is a biomolecular “nanomachine” that controls nucleocytoplasmic transport in eukaryotic cells. The key component of the functional architecture of the NPC is the assembly of intrinsically disordered proteins that line its passageway and play a central role in the NPC transport mechanism. Due to paucity of experimental methods capable to directly probe the morphology of this assembly in intact NPCs, much of our knowledge about its properties derives from in vitro experiments augmented by theoretical and computational modeling. I review the major insights into the biophysics of the assemblies of the intrinsically disordered proteins of the NPC arising from the theoretical analysis of the recent in vitro experimental results, with the emphasis on the phase separation and aggregation phenomena. 相似文献
18.
P. Andrew Chong Robert M. Vernon Julie D. Forman-Kay 《Journal of molecular biology》2018,430(23):4650-4665
RGG/RG motifs are RNA binding segments found in many proteins that can partition into membraneless organelles. They occur in the context of low-complexity disordered regions and often in multiple copies. Although short RGG/RG-containing regions can sometimes form high-affinity interactions with RNA structures, multiple RGG/RG repeats are generally required for high-affinity binding, suggestive of the dynamic, multivalent interactions that are thought to underlie phase separation in formation of cellular membraneless organelles. Arginine can interact with nucleotide bases via hydrogen bonding and π-stacking; thus, nucleotide conformers that provide access to the bases provide enhanced opportunities for RGG interactions. Methylation of RGG/RG regions, which is accomplished by protein arginine methyltransferase enzymes, occurs to different degrees in different cell types and may regulate the behavior of proteins containing these regions. 相似文献