首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.  相似文献   

2.
Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.  相似文献   

3.
Jennifer A. Lau 《Oikos》2013,122(3):474-480
As invasive species become integrated into existing communities, they engage in a wide variety of trophic interactions with other community members. Many of these interactions are direct (e.g. predator–prey interactions or interference competition), but invasive species also can affect native community members indirectly, by influencing the abundances of intermediary species in trophic webs. Observational studies suggest that invasive plant species affect herbivorous arthropod communities and that these effects may flow up trophic webs to influence the abundance of predators. However, few studies have experimentally manipulated the presence of invasive plants to quantify the effects of plant invasion on higher trophic levels. Here, I use comparisons across sites that have or have not been invaded by the invasive plant Medicago polymorpha, combined with experimental removals of Medicago and insect herbivores, to investigate how a plant invasion affects the abundance of predators. Both manipulative and observational experiments showed that Medicago increased the abundance of the exotic herbivore Hypera and predatory spiders, suggesting positive bottom–up effects of plant invasions on higher trophic levels. Path analyses conducted on data from natural habitats revealed that Medicago primarily increased spider abundance through herbivore‐mediated indirect pathways. Specifically, Medicago density was positively correlated with the abundance of the dominant herbivore Hypera, and increased Hypera densities were correlated with increased spider abundance. Smaller‐scale experimental studies confirmed that Medicago may increase spider abundance through herbivore‐mediated indirect pathways, but also showed that the effects of Medicago varied across sites, including having no effect or having direct effects on spider abundance. If effects of invasive species commonly flow through trophic webs, then invasive species have the potential to affect numerous species throughout the community, especially those species whose dynamics are tightly connected to highly‐impacted community members through trophic linkages.  相似文献   

4.
1. Studies have shown that plant diversity plays a major role in influencing arthropod community composition. However, the effects of increasing plant species diversity on arthropod abundance at multiple trophic levels in the presence of aromatic plants have not been well documented. 2. To explore the potential of using aromatic plants to biocontrol arthropods at multiple trophic levels, three aromatic plant species – French marigold (Tagetes patula L.), Ageratum (Ageratum houstonianum Mill.) and Catnip (Nepeta cataria L.) – were introduced into an apple orchard to increase ground plant species composition. 3. The aromatic plants influenced the structure of arthropod communities at multiple trophic levels, particularly the herbivores in the tree canopy and predators in ground covers. Aromatic plants negatively influenced total arthropod community abundance. Compared with the control treatment, the total arthropod community abundance in the treated areas declined 24.99–33.84% and 14.35–24.65% in the tree canopy and ground covers, respectively. 4. Aromatic plants negatively influenced herbivore abundance, both overall and relative to the total community. By contrast, aromatic plants positively influenced predator abundance, both overall and relative to the total community, in the treatments containing both ageratum and catnip. However, aromatic plants had no effect on species richness at each trophic level or on parasitoid abundance. 5. These results suggest that increasing ground plant species diversity by introducing aromatic plants into apple orchards may considerably affect arthropod community composition, and that aromatic plants are potentially effective for the biocontrol of herbivore pests in agroforestry ecosystems.  相似文献   

5.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

6.
Invasive plants are one of the most serious threats to native species assemblages and have been responsible for the degradation of natural habitats worldwide. As a result, removal of invasive species and reestablishment of natural vegetation have been attempted in order to restore biodiversity and ecosystem function. This study examined how native arthropod assemblages, an abundant and functionally important group of organisms in many ecosystems, are affected by the incursion of the invasive wetland plant Phragmites australis and if the restoration of the native vegetation in brackish Spartina alterniflora marshes results in the reestablishment of the arthropod community. The invasion of Phragmites into a coastal Spartina marsh in southern New Jersey seriously altered arthropod assemblages and trophic structure by changing the abundance of trophic groups (detritivores, herbivores, carnivores) and their taxonomic composition. Herbivore assemblages shifted from the dominance of external free‐living specialists (e.g., planthoppers) in Spartina to concealed feeders in Phragmites (stem‐feeding cecidomyiids). Moreover, free‐living arthropods in Phragmites became dominated by detritivores such as Collembola and chironomids. The dominant marsh spiders, web‐building linyphiids, were significantly reduced in Phragmites habitats, likely caused by differences in the physical environment of the invaded habitats (e.g., lower stem densities). Thus, trophic structure of arthropod assemblages in Phragmites, as seen in the large shifts in feeding guilds, was significantly different from that in Spartina. Removal of Phragmites with the herbicide glyphosate resulted in the rapid return of Spartina (≤5 yrs). Moreover, return of the dominant vegetation was accompanied by the recovery of most original habitat characteristics (e.g., live and dead plant biomass, water flow rate). The arthropod assemblage associated with Spartina also quickly returned to its preinvasion state and was not distinguishable from that in uninvaded Spartina reference sites. This study provides evidence that the reestablishment of native vegetation in areas previously altered by an invasive plant can result in the rapid recovery of the native arthropod assemblage associated with the restored habitat.  相似文献   

7.
Microbial symbionts can improve the competitive ability and stress tolerance of plant hosts and thus may enhance native plant resistance against invaders. We investigated whether symbiosis between a native grass, Poa alsodes, and a fungal endophyte (Neotyphodium sp.) improved the grass’s ability to compete against Microstegium vimineum (Japanese stiltgrass), a common invader in the eastern USA. We challenged naturally endophyte-symbiotic and experimentally endophyte-free P. alsodes plants with the invader. In the first experiment, we manipulated symbiosis and water availability to test for context-dependency in symbiont benefits. In the second experiment, we manipulated symbiosis and M. vimineum diversity (the number of invader populations), since greater intraspecific diversity is expected to improve invasion success and might alter the efficacy of symbiosis in invasion resistance. In both experiments, presence of the endophyte reduced the per plant biomass of M. vimineum and increased P. alsodes biomass. We found no evidence that benefits of the symbiont depended on water availability, and population-level diversity had a minor influence on M. vimineum: inflorescence number showed a parabolic relationship with increasing numbers of M. vimineum populations. Overall, symbiosis in the native grass had stronger effects on invader growth than either water availability or invader genetic diversity. Our results suggest that endophyte symbioses in native plants can increase host performance against an invader, although this conclusion needs confirmation in more complex field settings where other important factors, such as herbivores and fluctuating abiotic conditions, come into play.  相似文献   

8.
Nonnative plants alter the composition of native plant communities, with concomitant effects on arthropods. However, plant invasions may not be the only disturbance affecting native communities, and multiple disturbances can have compounding effects. We assessed the effects of invasion and drought on plant and arthropod communities by comparing grasslands dominated by nonnative Old World bluestem grasses (OWBs, Dichanthium annulatum) to grasslands dominated by native plants during a period of decreasing drought severity (2011–2013). Native plant communities had more species of plants and arthropods (/m2) than areas dominated by OWBs during extreme drought, but richness was comparable as drought severity decreased. Abundance of arthropods was greater in native plant communities than in OWB communities during extreme drought, but OWB communities had more arthropods during moderate and non-drought conditions. We observed a shift in the arthropod community from one dominated by detritivores to one dominated by herbivores following plant invasion; the magnitude of this shift increased as drought severity decreased. Both plant communities were dominated by nonnative arthropods. A nonnative leafhopper (Balclutha rubrostriata) and native mites (Mochlozetidae) dominated OWB communities as drought severity decreased, and OWBs may serve as refugia for both taxa. Nonnative woodlice (Armadillidium vulgare) dominated native plant communities during extreme and non-drought conditions and abundance of this species may be associated with an increase in plant litter and available nutrients. Given the importance of arthropods for ecosystem services, incorporating arthropod data into conservation studies may demonstrate how changes in arthropod diversity alter ecosystem function where nonnative plants are dominant.  相似文献   

9.
Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation.  相似文献   

10.
Food availability during the breeding season plays a critical role in reproductive success of insectivorous birds. Given that the invasive Argentine ant (Linepithema humile) is known to alter arthropod communities, we predicted that its invasion may affect the availability of food resources for coexisting foliage-gleaning birds. With this aim we studied, for 3 years, foliage arthropods occurring on cork oaks (Quercus suber) and tree heaths (Erica arborea) in invaded and non-invaded secondary forests of the northeastern Iberian Peninsula. Our results show that Argentine ants interact with arboreal foliage arthropods in a different manner than the native ants they displace do. The invasive ant impacted the arthropod community by reducing order diversity and ant species richness and by causing extirpation of most native ant species. Arthropod availability for foliage gleaners’ nestlings diminished in invaded cork oaks, mainly responding to the abundance and biomass depletion of caterpillars. Results suggest that the reproduction of canopy-foraging foliage-gleaning species that mostly rely on caterpillars to feed their young could be compromised by the Argentine ant invasion. Thus, the Argentine ant could be promoting bottom-up effects in the trophic web through its effects on the availability of arthropod preys for insectivorous birds.  相似文献   

11.
Gruner DS  Taylor AD 《Oecologia》2006,147(4):714-724
A longstanding goal for ecologists is to understand the processes that maintain biological diversity in communities, yet few studies have investigated the combined effects of predators and resources on biodiversity in natural ecosystems. We fertilized nutrient limited plots and excluded insectivorous birds in a randomized block design, and examined the impacts on arthropods associated with the dominant tree in the Hawaiian Islands, Metrosideros polymorpha (Myrtaceae). After 33 months, the species load (per foliage mass) of herbivores and carnivores increased with fertilization, but rarified richness (standardized to abundance) did not change. Fertilization depressed species richness of arboreal detritivores, and carnivore richness dropped in caged, unfertilized plots, both because of the increased dominance of common, introduced species with treatments. Herbivore species abundance distributions were more equitable than other trophic levels following treatments, and fertilization added specialized native species without changing relativized species richness. Overall, bird removal and nutrient addition treatments on arthropod richness acted largely independently, but with countervailing influences that obscured distinct top-down and bottom-up effects on different trophic levels. This study demonstrates that species composition, biological invasions, and the individuality of species traits may complicate efforts to predict the interactive effects of resources and predation on species diversity in food webs.  相似文献   

12.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

13.
Refuge‐mediated apparent competition was recently suggested as a mechanism that enables plant invasions. The refuge characteristics of introduced plants are predicted to enhance impacts of generalist herbivores on native competitors and thereby result in an increased abundance of the invader. However, this prediction has so far not been experimentally verified. This study tested if the invasion of a chemically defended seaweed is promoted by native generalist herbivores via refuge‐mediated apparent competition. The invader was shown to offer herbivores a significantly better refuge against fish predation compared with native seaweeds. Furthermore, in an experimental community, the presence of herbivores decreased the performance of neighbouring native seaweeds, but increased growth and relative abundance of the invader. These results provides the first experimental evidence that native generalist herbivores can shift a community towards a dominance of a well‐defended invader, inferior to native species in direct competitive interactions, by means of refuge‐mediated apparent competition.  相似文献   

14.
Abstract The structure of free‐living arthropod communities on the foliage of Acacia falcata was assessed along an extensive latitudinal gradient in eastern Australia. We hypothesized that abundance and biomass of arthropods within feeding groups would increase from temperate latitudes towards the tropics. We also hypothesized that the ratio of carnivores to herbivores would be consistent along the latitudinal gradient. Three sites at each of four latitudes, spanning 9° and 1150 km (Batemans Bay, Sydney, Grafton, Gympie in Australia), were sampled every season for 2 years, using pyrethrum knockdown. Abundance and biomass (based on dry weight) of arthropods within eight feeding groups were measured. The relative size of the feeding groups, and the ratio of carnivores to herbivores were then compared among latitudes and seasons. We found no consistent north to south (tropical to temperate) change in feeding group structure in terms of abundance. A weak latitudinal trend was evident for predator biomass, consisting of a reduction from north to south, but no significant trends in biomass for other feeding groups were found. Relative abundance and relative biomass of both carnivores and herbivores, as well as the ratio of carnivores to herbivores were consistent among latitudes. Finally, we compared a subset of these data to arthropod communities found on congeneric host species at individual sites along the latitudinal gradient. Overall, 68% of comparisons showed no significant differences in abundance or biomass within different feeding groups between host plants and among latitudes. We conclude that arthropod communities show consistencies among latitudes and between congeneric host species, in terms of feeding group and trophic structure. These results have implications for predicting the impacts of future climate change on arthropod communities.  相似文献   

15.
Urban development and species invasion are two major global threats to biodiversity. These threats often co‐occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non‐invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land‐use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community‐weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.  相似文献   

16.
Abstract 1. Biological invasions are usually thought to have a negative impact on native communities. However, data supporting this idea are often based on comparative studies between invaded and non‐invaded areas, and are spatially and temporally limited. 2. The present study experimentally assessed the impact of an exotic wasp, Vespula germanica, on the native arthropod community of north‐west Patagonia during 3 years in an area of 80 ha. Vespula germanica is an exotic social vespid that invaded north‐west Patagonia 20 years ago. It has been suggested that its populations affect native arthropods because of its broad diet and also because Patagonia lacks natural enemies and potential competitors for these wasps. 3. Using wasp‐specific toxic baits, V. germanica abundance was reduced in five sites of native woodlands during 3 consecutive years. The abundance, species richness, and composition of arthropods between non‐poisoned (control) and poisoned sites was then compared, both before and after the wasps were poisoned. 4. Wasp abundance represented 6% of the total arthropod catches in non‐poisoned sites and was reduced, on average, by 50% in the treated areas. The abundance, species richness, and composition of the arthropod community (305 species, 24 600 individuals) did not differ between control areas and areas where the abundance of V. germanica was reduced. Significant differences in response variables were found only before wasp poisoning had begun and were related to variations among sites. 5. These results suggest that V. germanica is not affecting the local arthropod assemblages, contradicting past work in other regions. The low relative abundance of wasps in Patagonia, when compared with other invaded regions, might explain the findings. 6. The present study provides further evidence for the importance of large‐scale experimental work with before/after comparisons to fully understand the impact of invaders on natural communities.  相似文献   

17.
Despite potential interactive effects of plant species and genotypic diversity (SD and GD, respectively) on consumers, studies have usually examined these effects separately. We evaluated the individual and combined effects of tree SD and mahogany (Swietenia macrophylla) GD on the arthropod community associated with mahogany. We conducted this study within the context of a tree diversity experiment consisting of 74 plots with 64 saplings/plot. We sampled 24 of these plots, classified as monocultures of mahogany or polycultures of four species (including mahogany). Within each plot type, mahogany was represented by either one or four maternal families. We surveyed arthropods on mahogany and estimated total arthropod abundance and species richness, as well as abundance and richness separately for herbivorous and predatory arthropods. Overall tree SD and mahogany GD had positive effects on total arthropod species richness and abundance on mahogany, and also exerted interactive effects on total species richness (but not abundance). Analyses conducted by trophic level group showed contrasting patterns; SD positively influenced herbivore species richness but not abundance, and did not affect either predator richness or abundance. GD influenced predator species richness but not abundance, and did not influence herbivore abundance or richness. There were interactive effects of GD and SD only for predator species richness. These results provide evidence that intra‐ and inter‐specific plant diversity exert interactive controls on associated consumer communities, and that the relative importance of SD and GD may vary among higher trophic levels, presumably due to differences in the underlying mechanisms or consumer traits.  相似文献   

18.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

19.
Sahara Mustard (Brassica tournefortii; hereafter mustard), an exotic plant species, has invaded habitats throughout the arid southwestern United States. Mustard has reached high densities across aeolian sand habitats of southwestern deserts, including five distinct sand habitats in the eastern Coachella Valley, California. We examined trends in ground-dwelling arthropod community structure concurrent with mustard invasion in 90 plots within those habitats from 2003 to 2011 (n = 773 plot·years). We expected arthropod communities to respond negatively to mustard invasion because previous work documented significant negative impacts of mustard on diversity and biomass of native plants, the primary resource base for many of the arthropods. Arthropod abundance and species richness declined during the study period while mustard cover increased, and arthropod metrics were negatively related to mustard cover across all plots. When controlling for non-target environmental correlates (e.g. perennial frequency and precipitation) and for potential factors that we suspected of mediating mustard effects (e.g. native cover and sand compaction), negative relationships with mustard remained statistically supported. Nevertheless, arthropod richness’s relationship decreased slightly in strength and significance suggesting that mechanistic pathways may be both direct (via habitat structure) and indirect (via native cover suppression and sand compaction). However, mechanistic pathways for mustard effects, particularly on arthropod abundance, remain unclear. Most arthropod taxa, including most detritivores, decreased through time and were negatively related to mustard cover. In contrast, many predators were positively related to mustard. In total, our study provides substantial evidence for a negative effect of Sahara mustard on the structure of a ground-dwelling arthropod community.  相似文献   

20.
Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of ‘invasion success’ in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non‐native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant‐soil fungi and plant allelochemical interactions on invasion success were species‐specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号