首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the design, synthesis and biological evaluation of a novel 99mTc 4-(4-cyclohexylpiperazine-1-yl)-butan-1-one-1-cyclopentadienyltricarbonyl technetium ([99mTc]5) as a potential SPECT tracer for imaging of σ2 receptors in tumors. [99mTc]5 was prepared in 25 ± 5% isolated radiochemical yield with radiochemical purity of >99% via double-ligand transfer (DLT) reaction from the ferrocene precursor 2b (4-(4-cyclohexylpiperazine-1-yl)-1-ferrocenylbutan-1-one). The corresponding Re-complex 4 and the ferrocenyl complex 2b showed relatively high affinity towards σ2 receptors in in vitro competition binding assay (Ki values of 4 and 2b were 64.4 ± 18.5 nM and 43.6 ± 21.3 nM, respectively) and moderate to high selectivity versus σ1 receptors (Kiσ1/Kiσ2 ratios were 12.5 and 95.5, respectively). The log D value of [99mTc]5 was determined to be 2.52 ± 0.33. Biodistribution studies in mice revealed comparably high initial brain uptake of [99mTc]5 and slow washout. Administration of haloperidol 5 min prior to injection of [99mTc]5 significantly reduced the radiotracer uptake in brain, heart, lung, and spleen by 40–50% at 2 h p.i.. Moreover, [99mTc]5 showed high uptake in C6 glioma cell lines (8.6%) after incubation for 1 h. Blocking with haloperidol to compete with [99mTc]5 significantly reduced the cell uptake. Preliminary blocking study in C6-brain-tumor bearing rats showed that [99mTc]5 binds to σ receptors in the brain-tumor specifically. These results are encouraging for further exploration of 99mTc-labeled probes for σ2 receptor tumor imaging in vivo.  相似文献   

2.
To identify new potent multidrug resistance modulators, we have synthesized a series of novel thieno[2,3-b]pyridines and furo[2,3-b]pyridines, and examined their stucture–activity relationships. All synthesized compounds were tested to determine BCRP1, P-gp, and MRP1 inhibitor activity, and most potent MDR modulators were also screened for their toxicity, cytotoxicity and Ca2+ channel antagonist activity. Among these compounds, thieno[2,3-b]pyridine (6r) was found to exhibit a potent P-gp inhibitory action with EC50 = 0.3 ± 0.2 μM, MRP1 inhibitory action with EC50 = 1.1 ± 0.1 μM and BCRP1 inhibitory action with EC50 = 0.2 ± 0.05 μM and may represent suitable candidate for further pharmacological studies.  相似文献   

3.
The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the ‘click-to-chelate’ protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The 99mTc labeled cMBP derivatives ([99mTc(CO)3]12, [99mTc(CO)3]13, and [99mTc(CO)3]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)3]12, [Re(CO)3]13, and [Re(CO)3]14, were shown to have high binding affinities (0.13 μM, 0.06 μM, and 0.16 μM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these 99mTc labeled cMBP derivatives ([99mTc(CO)3]12–14) to c-Met receptor positive U87MG cells.  相似文献   

4.
A series of 1-((2-hydroxynaphthalen-1-yl)(phenyl)(methyl))pyrrolidin-2-one derivatives by an efficient iodine catalyzed domino reaction involving various aromatic aldehydes, 2-pyrrolidinone and β-naphthol was achieved and the structures were elucidated by FTIR 1H NMR, 13C NMR, and HRMS. Subsequently they were evaluated for cytotoxicity against breast cancer (MCF-7), colon cancer (HCT116) cell lines. In the cytotoxicity, the relative inhibition activity was remarkably found to be high in MCF-7 cell lines as 79% (4c), 83% (4f) and the IC50values were 1.03 µM (4c), 0.98 µM (4f). Compounds 4a, 4e, 4km, and 4q were found to be inactive and rest showed a moderate activity. In order to get more insight into the binding mode and inhibitor binding affinity, compounds (4aq) were docked into the active site phosphoinositide 3-kinase (PI3K) (PDB ID: 4JPS) which is a crucial regulator of apoptosis or programmed cell death. Results suggested that the hydrophobic interactions in the binding pockets of PI3K exploited affinity of the most favourable binding ligands (4c and 4f: inhibitory constant (ki) = 66.22 nM and 107.39 nM). The SAR studies demonstrated that the most potent compounds are 4c and 4f and can be developed into precise PI3K inhibitors with the capability to treat various cancers.  相似文献   

5.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

6.
Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated 13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [18F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [18F]KBM-1 was carried out through KHF2 assisted substitution of [18F]? from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [18F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5 min to 60 min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30 min to 60 min post injection. Tumor uptake in subset of 30 min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [18F]KBM-1 as a RAR-α imaging agent.  相似文献   

7.
Prostate specific membrane antigen (PSMA) is recognized as an attractive molecular target for the development of radiopharmaceuticals to image and potentially treat metastatic prostate cancer. A series of novel 99mTc/Re-tricarbonyl radiolabeled PSMA inhibitors were therefore synthesized by the attachment of glutamate-urea-lysine (Glu-urea-Lys) and glutamate-urea-glutamate (Glu-urea-Glu) pharmacophore to single amino acid chelate (SAAC) where the SAAC ligand was either bis(pyridin-2-ylmethyl)amino (DPA), bis((1-methyl-1H-imidazol-2-yl)methyl)amino (NMI), bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino (CIM) or bis((1-(2-(bis(carboxymethyl)amino)-2-oxoethyl)-1H-imidazol-2-yl)methyl)amino (TIM). The in vitro binding affinity of the rhenium complexes was evaluated using PSMA-expressing human prostate cancer LNCaP cells. IC50 values ranged from 3.8 ± 2 to >2000 nM. A linker between the SAAC chelate and pharmacophore was required for high affinity binding. However, extending the length of the linker did not substantially improve binding. PSMA binding was also influenced by the nature of the SAAC chelate. One of the most potent compounds, 23b (IC50 = 4.8 ± 2.7 nM), was radiolabeled with technetium tricarbonyl ({99mTc(CO)3}+) to afford the {99mTc(CO)3}+ complex in excellent yield and high purity. This effort has led to the identification of a diverse series of promising high affinity {99mTc(CO)3}+ radiolabeled PSMA inhibitors.  相似文献   

8.
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure–activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3–2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5 μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells.  相似文献   

9.
Synthesis, in vitro and in vivo evaluation of [O-methyl-11C]dimethylamino-3(4-methoxyphenyl)-3H-pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-one (1), a potential imaging agent for mGluR1 receptors using PET are described. Synthesis of the corresponding desmethyl precursor 2 was achieved by demethylation of the methoxyphenyl compound 1 in 90% yield. Methylation using [11C]MeOTf in presence of NaOH afforded [11C]1 in 30% yield (EOS) with >99% chemical and radiochemical purities and with a specific activity of 3–5 Ci/μmol (n = 6). The total synthesis time was 30 min from EOB. The radiotracer selectively labeled mGluR1 receptors in slide-mounted sections of postmortem human brain containing cerebellum, hippocampus, prefrontal cortex and striatum as demonstrated by in vitro autoradiography using phosphor-imaging. PET studies in anesthetized baboon show that [11C]1 penetrates the BBB and accumulates in cerebellum, a region reported to have higher expression of mGluR1. These findings suggest [11C]1 is a promising PET radiotracer candidate for mGluR1.  相似文献   

10.
Classical 99mTc(CO)3+ and novel 99mTc(CO)2(NO)2+ cores complexed with flavonol derivatives were prepared. Autoradiography of postmortem AD transgenic mice (Tg C57, APP, PS1 12-month-old) brain section confirmed the binding property of [99mTc(CO)3+-3-OH-flavone]0 to Aβ(1–40) aggregates, while the novel 99mTc(CO)2(NO)2+ labeled compounds showed no binding sites in AD transgenic mice sections. Intravenous administration of [99mTc(CO)3+-3-OH-flavone]0 resulted in moderate brain uptake (0.48 ± 0.05%ID/g) at 5 min post-injection and slow clearance from the brain issues in 2 h post-injection (120 min: 0.39 ± 0.08%ID/g). Then an Aβ(1–40)-receptor-targeted Re(CO)3+-3-OH-flavone, was prepared to identify the structure of the technetium complex. UV–vis absorption and fluorescence emission properties have been studied at room temperature in order to determine the natures of the lowest electronically excited states of Re(CO)3+-3-OH-flavone and the ligand. The fluorescent rhenium complex Re(CO)3+-3-OH-flavone showed high affinity for Aβ(1–40) aggregates in vitro by fluorescence spectra (dissociation constant (Kd) = 11.16 nM). In conclusion, the results suggested that 99mTc(CO)3+-3-OH-flavone should be a suitable candidate as Aβ plaque SPECT imaging agent for AD.  相似文献   

11.
Cannabinoid receptor type 1 (CB1) is mainly expressed in the brain, as well as being expressed in functional relevant concentrations in various peripheral tissues. 1-(4-Chlorophenyl)-3-(3-(6-(pyrrolidin-1-yl)pyridin-2-yl)phenyl)urea (PSNCBAM-1, 1) was developed as a potent allosteric antagonist for CB1 and its oral administration led to reductions in the appetite and body weight of rats. Several analogs of 1 (compounds 2 and 3) were recently identified through a series of structure-activity relationship studies. Herein, we report the synthesis of radiolabeled analogs of these compounds using [11C]COCl2 and an evaluation of their potential as PET ligands for CB1 imaging using in vitro and in vivo techniques. [11C]2 and [11C]3 were successfully synthesized in two steps using [11C]COCl2. The radiochemical yields of [11C]2 and [11C]3 were 17 ± 8% and 20 ± 9% (decay-corrected to the end of bombardment, based on [11C]CO2). The specific activities of [11C]2 and [11C]3 were 42 ± 36 and 37 ± 13 GBq/μmol, respectively. The results of an in vitro binding assay using brown adipose tissue (BAT) homogenate showed that the binding affinity of 2 for CB1 (KD = 15.3 µM) was much higher than that of 3 (KD = 26.0 µM). PET studies with [11C]2 showed a high uptake of radioactivity in BAT, which decreased in animals pretreated with AM281 (a selective antagonist for CB1). In conclusion, [11C]2 may be a useful PET ligand for imaging peripheral CB1 in BAT.  相似文献   

12.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

13.
A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80 μM) and K562/A02 cells (IC50 >80 μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development.  相似文献   

14.
NTRK1/2/3 fusions have recently been characterized as low incidence oncogenic alterations across various tumor histologies. Tyrosine kinase inhibitors (TKIs) of the tropomyosin receptor kinase family TrkA/B/C (encoded by NTRK1/2/3) are showing promises in the clinic for the treatment of cancer patients whose diseases harbor NTRK tumor drivers. We describe herein the development of [18F]QMICF ([18F]-(R)-9), a quinazoline-based type-II pan-Trk radiotracer with nanomolar potencies for TrkA/B/C (IC50 = 85–650 nM) and relevant TrkA fusions including TrkA-TPM3 (IC50 = 162 nM). Starting from a racemic FLT3 (fms like tyrosine kinase 3) inhibitor lead with off-target TrkA activity ((±)-6), we developed and synthesized the fluorinated derivative (R)-9 in three steps and 40% overall chemical yield. Compound (R)-9 displays a favorable selectivity profile on a diverse set of kinases including FLT3 (>37-fold selectivity for TrkB/C). The mesylate precursor 16 required for the radiosynthesis of [18F]QMICF was obtained in six steps and 36% overall yield. The results presented herein support the further exploration of [18F]QMICF for imaging of Trk fusions in vivo.  相似文献   

15.
The 2-[(3-carboxy-1-oxopropyl)amino]-2-deoxy-d-glucose (CPADG) was synthesized and radiolabeled with 99mTcO4 to obtain the 99mTc–CPADG complex in high yield. It was stable over 6 h in saline at room temperature and in serum at 37 °C. The partition coefficient and electrophoresis results indicated that the complex was hydrophilic and cationic. In vitro cell studies showed there was an increase in the uptake of 99mTc–CPADG as a function of incubation time and 99mTc–CPADG was possibly transported via the glucose transporters. The biodistribution of 99mTc–CPADG in mice bearing S 180 tumor showed that the complex accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time and reached 1.91 and 5.05 at 4 h post-injection. Single photon emission computed tomography (SPECT) image studies showed there was an obvious accumulation in tumor sites, suggesting 99mTc–CPADG would be a promising candidate for tumor imaging.  相似文献   

16.
A series of novel 4,5-dihydropyrazole derivatives (3a3t) containing hydroxyphenyl moiety as potential V600E mutant BRAF kinase (BRAFV600E) inhibitors were designed and synthesized. Docking simulation was performed to insert compounds 3d (1-(5-(5-chloro-2-hydroxyphenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) and 3m (1-(3-(4-chlorophenyl)-5-(3,5-dibromo-2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) into the crystal structure of BRAFV600E to determine the probable binding model, respectively. Based on the preliminary results, compound 3d and 3m with potent inhibitory activity in tumor growth may be a potential anticancer agent. Results of the bioassays against BRAFV600E, MCF-7 human breast cancer cell line and WM266.4 human melanoma cell line all showed several compounds had potent activities IC50 value in low micromolar range, among them, compound 3d and compound 3m showed strong potent anticancer activity, which were proved by that 3d: IC50 = 1.31 μM for MCF-7 and IC50 = 0.45 μM for WM266.5, IC50 = 0.22 μM for BRAFV600E, 3m: IC50 = 0.97 μM for MCF-7 and IC50 = 0.72 μM for WM266.5, IC50 = 0.46 μM for BRAFV600E, which were comparable with the positive control Erlotinib.  相似文献   

17.
Several spirocyclic piperidine derivatives were designed and synthesized as σ1 receptor ligands. In vitro competition binding assays showed that the fluoroalkoxy analogues with small substituents possessed high affinity towards σ1 receptors and subtype selectivity. Particularly for ligand 1′-((6-(2-fluoroethoxy)pyridin-3-yl)methyl)-3H-spiro[2-benzofuran-1,4′-piperidine] (2), high σ1 receptor affinity (Ki = 2.30 nM) and high σ12 subtype selectivity (142-fold) as well as high σ1/VAChT selectivity (234-fold) were observed. [18F]2 was synthesized using an efficient one-pot, two-step reaction method in a home-made automated synthesis module, with an overall isolated radiochemical yield of 8–10%, a radiochemical purity of higher than 99%, and specific activity of 56–78 GBq/μmol. Biodistribution studies of [18F]2 in ICR mice indicated high initial brain uptake and a relatively fast washout. Administration of haloperidol, compound 1 and different concentrations of SA4503 (3, 5, or 10 μmol/kg) 5 min prior to injection of [18F]2 significantly decreased the accumulation of radiotracer in organs known to contain σ1 receptors. Ex vivo autoradiography in Sprague–Dawley rats demonstrated high accumulation of radiotracer in brain areas with high expression of σ1 receptors. These encouraging results prove that [18F]2 is a suitable candidate for σ1 receptor imaging with PET in humans.  相似文献   

18.
Inspired by the significant anti-cancer activity of our previously screened natural ergosterol peroxide (EP, 1), we synthesized and characterized a series of novel 5α,8α-epidioxyandrost-3β-ol-17-(O-phenylacetamide)oxime derivatives (9ao). The anti-proliferative activity of the synthesized compounds against human hepatocellular carcinoma cells (HepG2, Sk-Hep1) and human breast cancer cells (MCF-7, MDA-MB231) were investigated. Compounds 9d, 9f, 9h, 9j and 9m displayed good anti-proliferative activity (most IC50 < 20 μM) in vitro. Furthermore, fluorescence imaging showed that the designed coumarin-9d conjugate (12) localized mainly in mitochondria, leading to enhanced anticancer activities over the parent structure.  相似文献   

19.
Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand–protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd = 4.4 μM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.  相似文献   

20.
PURPOSE: To assess the effect of adding neoadjuvant chemotherapy (NACT) to concurrent chemoradiotherapy (CCRT) in patients with locoregionally advanced nasopharyngeal carcinoma (NPC) and undetectable pretreatment Epstein-Barr virus (pEBV) DNA. MATERIALS AND METHODS: We enrolled 639 NPC patients with stage II to IVB and undetectable pEBV DNA to receive CCRT with or without NACT. Radiotherapy was 2.0 to 2.27 Gy per fraction with five daily fractions per week for 6 to 7 weeks to the primary tumor and 62 to 70 Gy to the involved neck area. NACT was cisplatin (80-100 mg/m2 day 1) and 5-fluorouracil (800-1000 mg/m2, 120-hour continuous intravenous infusion) every 3 weeks for two or three cycles. CCRT was cisplatin (80-100 mg/m2 day 1) every 3 weeks for three cycles. RESULTS: For all patients, the 5-year overall survival (OS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS), and progression-free survival (PFS) rates were 91.9%, 92.2%, 95.0%, and 86.4%, respectively. There was no significant difference in OS (5-year OS 90.8% [NACT + CCRT group] vs 92.7% [CCRT alone]; hazard ratio [HR] 1.24; P = .486), LRFS (HR 1.13, 95% confidence interval [CI] 0.59-2.14, P = .715), DMFS (HR 0.78, 95% CI 0.34-1.78, P = .554), or PFS (HR 1.21, 95% CI 0.75-1.95, P = .472). CONCLUSION: CCRT with or without NACT produced a good treatment outcome in patients with locoregionally advanced NPC and undetectable pEBV DNA, but NACT before CCRT did not significantly improve survival rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号