首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
1. Conditions experienced during the early stages of development may have carry‐over effects on performance during later life. The egg laying period and embryonic development of temperate and boreal zone amphibians often coincides with peak acidity resulting from spring snow‐melt, but the effects of acid conditions during embryonic stage on subsequent performance are unknown. 2. We investigated the potential carry‐over effects of acidity during the embryonic stage on performance up to metamorphosis in the common frog (Rana temporaria) tadpoles. There were four combinations of acid (4.5) and neutral (7.5) pH treatments applied to the egg and larval stages in a factorial laboratory experiment. In addition, we studied the difference in embryonic and larval tolerance of acidity between two populations originating from circumneutral (pH 6.6) and acidic conditions (pH 4.8). 3. The effects of acid conditions during the embryonic stage were sublethal, as indicated by delayed development and reduced size. Under acid conditions, tadpoles that had been raised in neutral water as embryos at first grew more slowly than tadpoles raised under acid conditions as embryos. At metamorphosis, no effects of embryonic acidity were detectable indicating that tadpoles were able to compensate fully for the initial reduction in growth. 4. Acid conditions during the larval period had a strongly negative effect on survival, size and age at metamorphosis. The amount of food consumed was lower under acid conditions, suggesting that reduced food consumption was at least partly responsible for the negative effects. 5. Although the two populations differed in the length of larval period, there was no indication of a differential response to the treatments in any of the metamorphic traits studied. 6. These results suggest that, although moderate acid conditions during embryonic development affect growth and development negatively, this influence does not persist after conditions have returned to normal. However, even moderately acid conditions during the larval period may have a strong negative influence on survival and performance of the tadpoles.  相似文献   

2.
1. Some organisms under variable predator pressure show induced antipredator defences, whose development incurs costs and may be associated with changes to later performance. This may be of especial relevance to animals with complex life histories involving metamorphosis. 2. This study examines the effect of predation environment, experienced both during embryonic and larval stages, on palmate newt (Triturus helveticus) metamorphosis. Newt eggs were raised until hatching with or without exposure to chemical cues from brown trout (Salmo trutta), and larval development was monitored in the presence or absence of the cues. 3. Exposure to predator cues during the embryonic stage resulted in higher growth rates at the larval stage, reduced time to metamorphosis and size at metamorphosis. Metamorphs also had narrower heads and shorter forelimbs than those from predator‐free treatments. In contrast, exposure to predator cues during the larval stage did not affect metamorph characteristics. 4. These results indicate that developing embryos are sensitive to predator chemical cues and that the responses can extend to later stages. Reversion of induced defences when predation risk ceased was not detected. We discuss the possible adaptive significance of these responses.  相似文献   

3.
《Zoology (Jena, Germany)》2014,117(2):139-145
For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions.  相似文献   

4.
Abstract 1. In animals with a complex life cycle, larval stressors may carry over to the adult stage. Carry‐over effects not mediated through age and size at metamorphosis have rarely been studied. The present study focuses on the poorly documented immune costs of short‐term food stress both in the larval stage and after metamorphosis in the adult stage. 2. The present study quantified immune function [number of haemocytes, activity of prophenoloxidase (proPO) and phenoloxidase (PO)] in an experiment where larvae of the damselfly Lestes viridis were exposed to a transient starvation period. 3. Directly after starvation, immune variables were reduced in starved larvae. Levels of proPO and PO remained low after starvation, even after metamorphosis. In contrast, haemocyte numbers were fully compensated by the end of the larval stage, yet were lower in previously starved animals after metamorphosis. This can be explained as a cost of the observed compensatory growth after starvation. Focusing only on potential costs of larval stressors within the larval stage may therefore be misleading. 4. The here‐identified immunological cost in the adult stage of larval short‐term food stress and associated compensatory growth strongly indicates that physiological costs may explain hidden carry‐over effects bridging metamorphosis. This adds to the increasing awareness that the larval and adult stages in animals with a complex life cycle should be jointly studied, as trade‐offs may span metamorphosis.  相似文献   

5.
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as food-deprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring’s developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.  相似文献   

6.
Life history responses depend on timing of cannibalism in a damselfly   总被引:1,自引:0,他引:1  
1. Cannibalism has often been suggested as an important mechanism to reach the necessary developmental stage and size before a critical time horizon is reached, but this role has been largely unexplored. We studied effects of cannibalism on the life history of the damselfly Lestes viridis under combinations of a time constraint (by manipulating the perceived time available in the growth season) and a biotic constraint (density). 2. Larvae had a faster development and growth rate when reared at high time stress (late photoperiod). They also had a higher growth rate and mass at emergence when cannibalism occurred (density 2 and 4). Cannibalism occurred earlier at higher density. Accelerated life history responses (faster development and growth rate) and a higher mass at emergence were dependent upon the timing of cannibalism. Responses were more pronounced or only present if cannibalism occurred early in the larval period. 3. Our data suggest that cannibalism may not only act as a lifeboat mechanism by enabling cannibals to survive detrimental ecological conditions, but may also act as a compensatory mechanism to keep life history variables near‐optimal at life history transitions, even under sub‐optimal conditions.  相似文献   

7.
Organisms are exposed to multiple sources of stress in nature. When confronted with a stressful period affecting growth and development, compensatory responses allow the restoration of individual fitness, providing an important buffering mechanism against climatic and other environmental variability. However, tradeoffs between increased growth/development and other physiological traits are predicted to prevent these high growth and development rates from becoming constitutive. Here, we investigated how compensatory responses in growth and development affect immune responses. By using low temperature to stop embryonic development, we exposed moor frog Rana arvalis tadpoles to two levels of time‐constraints: non‐delayed hatching and 12‐day delayed hatching. In a common garden experiment, we recorded larval growth and development, as well as their immune response, measured as the inflammatory reaction after the injection of phytohaemagglutinin (PHA). Tadpoles originating from delayed hatching treatments had a lower immune response to PHA challenge than those from the non‐delayed hatching treatment. In general, tadpoles from the delayed hatching treatment reached metamorphosis faster and at a smaller size than control tadpoles. However, immune‐challenged tadpoles were not able to accelerate their development in response to delayed hatching. Our results indicate that 1) the innate immune response can be reduced in organisms undergoing compensatory developmental responses in growth and development and 2) compensatory capacity can be reduced when organisms are immunologically challenged. These dual findings reveal the complexity of handling multiple stressors and highlight the importance of examining the costs and limits of mounting an immune response in the context of increasing phenological instability ascribed to climate change.  相似文献   

8.
Theory predicts that, in organisms with complex life cycles, if the earlier-stage limiting factor induces weak later-stage phenotypes, the development of the later-stage trait should evolve to reduce carry-over effects. Local adaptations could thus favour decoupling of later stages. However, decoupling is not always possible. In this study, we used a widespread amphibian, the European fire salamander (Salamandra salamandra), to assess the role of local adaptations to environmental stressful conditions experienced at the larval stage. We exposed 150 larvae from different altitudes to two conditions: rich food and poor food condition. Conditions in early life stages can affect an individual's traits, either as a direct effect or mediated through outcomes in successive life stages. To distinguish between effects of rearing conditions and local adaptation, we searched for a causal model. The causal model detected effects of both food treatment and population origin (altitude) on all life stages. Larvae reared under rich food condition metamorphosed earlier, had higher growth rates and reached smaller size at metamorphosis. Significant differences occurred between larvae of different origin: low-altitude individuals performed poorly under the poor food treatment. Moreover, larvae from higher altitudes were slower with rich food and faster with poor food compared to those from lower altitudes. Our results underline that environmental conditions and local adaptation can interplay in determining the plasticity of larval stages, still adaptations can maximize the growth efficiency of early stages in oligotrophic environments, leading to divergent pathways across populations and environmental conditions.  相似文献   

9.
Dmitriew C  Rowe L 《Oecologia》2005,142(1):150-154
Periods of poor nutrition during early development may have negative fitness consequences in subsequent periods of ontogeny. In insects, suppression of growth and developmental rate during the larval stage are likely to affect size and timing of maturity, which in turn may lead to reduced reproductive success or survivorship. In light of these costs, individuals may achieve compensatory growth via behavioural or physiological mechanisms following food limitation. In this study, we examined the effects of a temporary period of food restriction on subsequent growth and age and size at maturity in the larval damselfly Ischnura verticalis (Odonata: Coenagrionidae). We also asked whether this temporary period of reduced nutrition affected subsequent foraging behaviour under predation risk. I. verticalis larvae exposed to a temporary food shortage suffered from a reduced growth rate during this period relative to a control group that was fed ad libitum. However, increased growth rates later in development ensured that adult body size measurements (head and pronotum widths) did not differ between the treatments upon emergence. In contrast, adult dry mass did not catch up to that of the controls, indicating that the increased growth rates for size dimensions occur at the cost of similar gains in mass. Predators reduced foraging effort of larvae, but this reduction did not differ between control larvae and those previously exposed to poor nutrition.  相似文献   

10.
Carry-over effects influence trait responses in later life stages as a result of early experience with environmental cues. Predation risk is an influential stressor and selection exists for early recognition of threats. In particular, invasive species may benefit from carry-over effects by preemptively recognizing and responding to novel predators via latent developmental changes and embryonic learning. In a factorial experiment, we conditioned invasive American bullfrog embryos (Lithobates catesbeianus) to the odor of a novel fish predator, largemouth bass (Micropterus salmoides) alone or in combination with injured conspecific cues. We quantified developmental carryover in the larval life stage and found that individuals conditioned to the highest risk (fish and injured conspecific cues) grew into longer bodied larvae relative to larvae from lower risk treatments. We also assessed embryonic learning, a behavioral carry-over effect, and found an interaction between embryonic conditioning and larval exposure. Behavioral responses were only found in scenarios when predation risk varied in intensity across life history stages, thus requiring a more flexible antipredator strategy. This indicates a potential trade-off between the two strategies in larval growth and development rates, and time until metamorphosis. Our results suggest that early predator exposure and carry-over effects have significant impacts on life history trajectories for American bullfrogs. This research contributes to our understanding of a potentially important invasion mechanism in an anuran species of conservation concern.  相似文献   

11.
Wu CS  Gomez-Mestre I  Kam YC 《Oecologia》2012,169(1):15-22
Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles’ ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.  相似文献   

12.
Despite a large body of knowledge about the evolution of life histories, we know little about how variable food availability during an individual's development affects its life history. We measured the effects of manipulating food levels during early and late larval development of the mosquito Aedes aegypti on its growth rate, life history and reproductive success. Switching from low to high food led to compensatory growth: individuals grew more rapidly during late larval development and emerged at a size close to that of mosquitoes consistently reared at high food. However, switching to high food had very little effect on longevity, and fecundity and reproductive success were considerably lower than in consistently well‐fed mosquitoes. Changing from high to low food led to adults with similar size as in consistently badly nourished mosquitoes, but even lower fecundity and reproductive success. A rapid response of growth to changing resources can thus have unexpected effects in later life and in lifetime reproductive success. More generally, our study emphasizes the importance of varying developmental conditions for the evolutionary pressures underlying life‐history evolution.  相似文献   

13.
Environmental conditions experienced early in life have been shown to significantly affect growth trajectories at later stages in many vertebrate species. Amphibians typically have a biphasic life history, with an aquatic larval phase during early development and a subsequent terrestrial adult phase after completed metamorphosis. Thus, the early conditions have an especially strong impact on the future survival and fitness of amphibians. We studied whether early nutritional conditions affect the behavioural reaction of fire salamander larvae (Salamandra salamandra) before completion of metamorphosis. Fire salamander larvae reared under rich nutritional conditions were heavier and larger, displayed better body condition overall throughout the first three month of life and metamorphosed earlier compared with larvae raised under poor nutritional conditions. Specifically, we tested whether larvae reared under these different conditions differed with respect to their risk‐taking behaviour and activity. We found no differences in the activity of larvae with respect to their experienced early food conditions. However, larvae reared under poor nutritional conditions hid significantly more often in a risk‐taking test than larvae reared under rich food conditions. This increase in shelter‐seeking behaviour might be an adaptation to reduce the risk of larval drift or an adaptation to compensate for physiological deficits in part by appropriate behavioural reactions. Our results indicate that environmental conditions, such as food availability, may lead to different behavioural strategies.  相似文献   

14.
Production of bay anchovy Anchoa mitchilli is highest in the larval and juvenile stages. The interplay between vital rates, stage durations, prey resources, and anchovy abundance ultimately determines the relative magnitude of recruitment (which in the model varies by about three-fold) and of stage-specific production. Changes in adult seasonal spawning patterns that increase the number of larval survivors result in only a slight increase in overall production due to density-dependent decreases in growth rates of later life stages. Bay anchovy in the mid-Chesapeake Bay may reach a compensatory threshold during late summer-autumn as fish growth is affected by competition for food resources. Density dependence in the population is evident in the relationships between spawner-recruit, size-recruit, and production of larval or juvenile to young-of-the-year life stages. Density-dependent growth acts differentially upon the early life stage that exceeds the compensatory threshold in any given year, due either to environmental variability or population size, or both. This could explain partially the relatively low recruitment variability observed for this anchovy.  相似文献   

15.
The non-consumptive effects of predator-induced stress can influence a variety of life-history traits. Many previous studies focused only on short-term effects such as development and reproductive rates. Recent studies have showed that long-term predation stress (given during the whole life of the prey) and short-term predation stress (provided during the immature stage of the prey) could generate completely opposite results: the former could decrease lifespan, whereas the later could increase lifespan. However, it is still unclear whether the advantage is because of the short duration of exposure or the early stage of life during which exposure was exerted. Thus, in this study, the prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different life stages (larva, protonymph, tritonymph, first 5 d of oviposition, the full lifespan or none of the above). The results showed that the predation stress supplied during larval and protonymphal stage delayed development, reduced fecundity and prolonged lifespan of the prey, while the stress given during tritonymphal stage only reduced lifespan slightly and the stress given during the first 5 d of oviposition did not change lifespan but reduced fecundity. This study indicated that the effects of predation stress are dependent on prey life stage and the predation stress experienced in the early life stages is important to lifespan modulation.  相似文献   

16.
Early‐life ecological conditions have major effects on survival and reproduction. Numerous studies in wild systems show fitness benefits of good quality early‐life ecological conditions (“silver‐spoon” effects). Recently, however, some studies have reported that poor‐quality early‐life ecological conditions are associated with later‐life fitness advantages and that the effect of early‐life conditions can be sex‐specific. Furthermore, few studies have investigated the effect of the variability of early‐life ecological conditions on later‐life fitness. Here, we test how the mean and variability of early‐life ecological conditions affect the longevity and reproduction of males and females using 14 years of data on wild banded mongooses (Mungos mungo). Males that experienced highly variable ecological conditions during development lived longer and had greater lifetime fitness, while those that experienced poor early‐life conditions lived longer but at a cost of reduced fertility. In females, there were no such effects. Our study suggests that exposure to more variable environments in early life can result in lifetime fitness benefits, whereas differences in the mean early‐life conditions experienced mediate a life‐history trade‐off between survival and reproduction. It also demonstrates how early‐life ecological conditions can produce different selection pressures on males and females.  相似文献   

17.
Acceleration of growth following a period of diet restriction may result in either complete or partial catch-up in size. The existence of such compensatory growth indicates that organisms commonly grow at rates below their physiological maxima and this implies a cost for accelerated growth. We examined patterns of accelerated growth in response to temporary resource limitation, and assayed both short and long-term costs of this growth in the ladybird beetle Harmonia axyridis. Subsequent to the period of food restriction, accelerated growth resulted in complete compensation for body sizes, although we observed greater larval mortality during the period of compensation. There were no effects on female fecundity or survivorship within 3 months of maturation. Females did not discriminate against males that had undergone compensatory growth, nor did we observe effects on male mating behaviour. However, individuals that underwent compensatory growth died significantly sooner when deprived of food late in adult life, suggesting that longer-term costs of compensatory growth may be quite mild and detectable only under stressful conditions.  相似文献   

18.
1.?Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2.?We examined the influence of food availability at the time of sampling, 2?months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3.?We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2?months prior to growth measurements had positive effects on adult growth rate; though, food levels 2?months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2?months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2?months prior such that the effects of juvenile food level diminished as the food level experienced 2?months prior increased. 4.?These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5.?A simultaneous consideration of past events in both the adult and juvenile stage may therefore improve predictions for individual- and population-level responses to environmental change.  相似文献   

19.
We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21 °C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development.  相似文献   

20.
Low food availability during early growth and development can have long-term negative consequences for reproductive success. Phenotypic plasticity in adult life-history decisions may help to mitigate these potential costs, yet adult life-history responses to juvenile food conditions remain largely unexplored. I used a food-manipulation experiment with female Trinidadian guppies (Poecilia reticulata) to examine age-related changes in adult life-history responses to early food conditions, whether these responses varied across different adult food conditions, and how these responses affected overall reproductive success. Guppy females reared on low food as juveniles matured at a later age, at a smaller size, and with less energy reserves than females reared on high food as juveniles. In response to this setback, they changed their investment in growth, reproduction, and fat storage throughout the adult stage such that they were able to catch up in body size, increase their reproductive output, and restore their energy reserves to levels comparable to those of females reared on high food as juveniles. The net effect was that adult female guppies did not merely mitigate but surprisingly were able to fully compensate for the potential long-term negative effects of poor juvenile food conditions on reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号