首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-(Pyren-1-yl)-(3R,4S)-4-[(1S,2R)-1,2,3-trihydroxypropyl]pyrrolidin-3-ol (4) was obtained in 36% yield from 3-deoxy-3-C-formyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (3) by combined hydrolysis and aminoalkylation reactions with 1-aminopyrene in a one-pot reaction. Cleavage reactions of the exocyclic triol chain in 4 with NaIO4 and NaBH4 resulted in iminosugars 7 and 8, which are analogues of the furanose forms of 2-deoxy-d-allose and of 2-deoxy-d-ribose, the latter analogue N-(pyren-1-yl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol (8) being formed in 83% yield.  相似文献   

2.
The aerial parts of Aruncus dioicus var. kamtschaticus afforded five new monoterpenoids (1-5): 4-(erythro-6,7-dihydroxy-9-methylpent-8-enyl)furan-2(5H)-one (1, aruncin A), 2-(8-ethoxy-8-methylpropylidene)-5-hydroxy-3,6-dihydro-2H-pyran-4-carboxylic acid (2, aruncin B), 4-(hydroxymethyl)-6-(8-methylprop-7-enyl)-5,6-dihydro-2H-pyran-2-one-11-O-β-d-glucopyranoside (3, aruncide A), (3S,4S,5R,10R)-3-(10-ethoxy-11-hydroxyethyl)-4-(5-hydroxy-7-methylbut-6-enyl)oxetan-2-one-11-O-β-d-glucopyranoside (4, aruncide B), and (3S,4S,5R,7R)-5-(9-methylprop-8-enyl)-1,6-dioxabicyclo[3,2,0]heptan-2-one-7-(hydroxymethyl)-12-O-β-d-glucopyranoside (5, aruncide C). Compound 2 showed potent cytotoxicity against Jurkat T cells with an IC50 value of 17.15 μg/mL. In addition, compounds 7 and 10 exhibited moderate antioxidant activity with IC50 values of 46.3 and 11.7 μM, respectively.  相似文献   

3.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

4.
Alkylation of benzyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside in N,Ndimethyl formamide with (R)-2-chloropropionic acid gave crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-carboxyethyl]-β-D-glucopyranoside. After hydrogenolysis of the benzyl group 4-O-[(S)-D-carboxyethyl]-D-glucose was obtained which lactonized very easily. Treatment of benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-carboxyethyl]-β-D-glucopyranoside with diazomethane gave cristalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(methoxycarbonyl)ethyl]-β-D-glucopyranoside, which was reduced with lithium aluminium hydride to crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(hydroxymethyl)ethyl]-β-D-glucopyranoside After hydrogenolysis of the benzyl groups 4-O-[(S)-1-(hydroxymethyl)ethyl]-D-glucose was obtained. A similar sequence of reactions was performed with (S)-2-chloropropionic acid.  相似文献   

5.
Squaric acid and its derivatives are versatile synthons and have demonstrated applications in medicinal chemistry, notably as non-classical bioisosteric replacements for functional groups such as carboxylic acids, alpha-amino acids, urea, guanidine, peptide bonds and phosphate/pyrophosphate linkages. Surprisingly, no reports have appeared concerning its possible application as a nucleobase substitute in nucleosides. A preliminary investigation of such an application is reported herein. 3-Amino-4-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-cyclobut-3-ene-1,2-dione, 3-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-4-methoxycyclobut-3-ene-1,2-dione, and 3-hydroxy-4-((1R,4S)-4-(hydroxymethyl)cyclopent-2-en-1-yl)amino-cyclobut-3-ene-1,2-dione sodium salt were synthesized. Computational analyses of their structures and preliminary antitumor and antiviral screening results are reported.  相似文献   

6.
Iminosugars are monosaccharide analogues that have been demonstrated to be specific inhibitors for glycosidases and are currently used therapeutically in several human disorders. N-alkylated derivatives of d-fagomine and (2R,3S,4R,5S)-2-(hydroxymethyl)-5-methylpyrrolidine-3,4-diol with aliphatic chains were tested in eight human cancer cell lines to analyze their cytotoxicity and the inhibitory effect in the activities of specific glycosidases. Results indicate that these compounds were more cytotoxic as the length of the alkyl chain increases. N-dodecyl-d-fagomine inhibited specifically the α-d-glucosidase activity in cell lysates, whereas no effect was detected in other glycosidases. The N-dodecyl derivative of (2R,3S,4R,5S)-2-(Hydroxymethyl)-5-methylpyrrolidine-3,4-diol induced specific inhibition against α-l-fucosidase in cell lysates. Our results indicated that the length of the alkyl chain linked to the iminosugars determine their cytotoxicity as well as the inhibitory effect on the enzymatic activities of specific glycosidases, in human cancer cell lines.  相似文献   

7.
Two new isodrimene sesquiterpene derivatives, 2(S)-hydroxyalbicanol (1, =(2S,4aS,8S,8aS)-8-(hydroxymethyl)-4,4,8a-trimethyl-7-methylenedecahydronaphthalen-2-ol) and 2(S)-hydroxyalbicanol 11-acetate (2, =((1S,4aS,7S,8aS)-7-hydroxy-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)methyl acetate) were isolated from the culture broth of the fungus Polyporus arcularius, together with two phenylpropanediols, (1S,2S)- and (1R,2S)-1-phenyl-1,2-dihydroxypropane (3, 4). Compound 3 is reported as a naturally occurring compound for the first time. The structures of the compounds were elucidated on the basis of spectroscopic analysis. Compound 1 exhibited growth inhibition of lettuce seedlings with IC50 values of 1.3 mM to hypocotyl and 1.7 mM to radicle.  相似文献   

8.
Five new N-acetyldopamine (NADA) derivatives (1–5) and one known NADA quinone methide (6) were isolated from Periostracum Cicadae (the cast-off shell of the cicada Cryptotympana pustulata Fabricius), which is known as chantui in China and is used in traditional Chinese medicine to treat soreness of the throat, hoarseness, itching, and spasms. By combined analysis of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, CD spectra, and chemical evidence, the structures of the isolated compounds were established as (R)-N-(2-(3,4-dihydroxyphenyl)-1-ethoxy-2-oxoethyl)acetamide (1), (1R,2R)-N-(1,2-diethoxy-2-(3,4-dihydroxyphenyl)-ethyl)acetamide (2), (R)-N-(1-acetamido-2-ethoxy-2-(3,4-dihydroxyphenyl)-ethyl)acetamide (3), (1R,2R)-N-(2-(3,4-dihydroxyphenyl)-2-ethoxy-1-methoxyethyl)acetamide (4), (1S,2S)-N-(2-(3,4-dihydroxyphenyl)-2-ethoxy-1-methoxyethyl)acetamide (5), and (R)-N-(2-(3,4-dihydroxyphenyl)-2-methoxyethyl)acetamide (6).  相似文献   

9.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

10.
Four aristolane sesquiterpenes were isolated from the fruiting bodies of Russula lepida and R. amarissima, namely (1R,2S)-1,2-dihydroxyaristolone (6), (2S,11S)-2,12-dihydroxy-aristolone (7), (1R,2S,11S)-1,2,12-trihydroxyaristolone (8), (1S,2S,11S)-1,2,12-trihydroxy-aristolone (9). In addition, a seco-cucurbitane triterpene, i.e. 3,4-secocucurbita-4,24E-diene-3-hydroxy-26-carboxylic acid (14) was isolated from both species. The configuration at C-2 of the already known rulepidol (2-hydroxyaristolone, 5) was corrected as S instead of R. Several more aristolane and nardosinane sesquiterpenes, as well as cucurbitane triterpenes, already reported both from European and Chinese samples of R. lepida, were also isolated. Compound 14 showed moderate cell growth inhibitory activity.  相似文献   

11.
Photoamidation of 3-O-acetyl-1,2:5,6-di-O-isopropylidene-α-d-erythro-hex-3-enofuranose (1) afforded 3-O-acetyl-4-C-carbamoyl-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (2) and 3-O-acetyl-3-C-carbamoyl-1,2:5,6-di-O-isopropylidene-d-α-allofuranose (3) in 65 and 26% yields, respectively (based on consumed1). Treatment of2 with 5% hydrochloric acid in methanol yielded the spiro lactone5, which was deacetylated to yield7. Reduction of5 with sodium borohydride afforded 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-gulofuranose (9) in 79% yield. Oxidation of9 with sodium metaperiodate afforded a dialdose that was reduced with sodium borohydride to give 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-erythro-pentofuranose (11) in 88% yield. Treatment of the acetate12, derived from11, with trifluoroacetic acid, followed by acetylation, afforded the branched-chain sugar acetate14. Condensation of the glycosyl halide derived from14 withN6-benzoyl-N6, 9-bis-(trimethylsilyl)adenine yielded an equimolar anomeric mixture of protected nucleosides15 and16 in 40% yield. Treatment of the latter compounds with sodium methoxide in methanol afforded 9-[4-C-(hydroxymethyl)-β-d-erythro-pentofuranosyl]-adenine (17) and the α-d anomer18. The structure of3 was determined by correlation with the known 5,3′-hemiacetal of 3-C-(hydroxymethyl)-1,2-O-isopropylidene-α,α′-d-ribo-pentodialdose (25).  相似文献   

12.
Inhibitors of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represent a promising class of novel antibiotics, selectively combating Gram-negative bacteria. In order to elucidate the impact of the hydroxymethyl groups of diol (S,S)-4 on the inhibitory activity against LpxC, glyceric acid ethers (R)-7a, (S)-7a, (R)-7b, and (S)-7b, lacking the hydroxymethyl group in benzylic position, were synthesized. The compounds were obtained in enantiomerically pure form by a chiral pool synthesis and a lipase-catalyzed enantioselective desymmetrization, respectively. The enantiomeric hydroxamic acids (R)-7b (Ki = 230 nM) and (S)-7b (Ki = 390 nM) show promising enzyme inhibition. However, their inhibitory activities do not substantially differ from each other leading to a low eudismic ratio. Generally, the synthesized glyceric acid derivatives 7 show antibacterial activities against two Escherichia coli strains exceeding the ones of their respective regioisomes 6.  相似文献   

13.
《Carbohydrate research》1987,162(2):237-246
Total syntheses of both (2S, 3R, 4E)-1-O-β-d-galactopyranosyl-N-(2′R)-2′-hydroxytetracosanoylsphingenine 23 and the (2′S) stereoisomer were performed in an unambiguous way by employing either (2S, 3R, 4E)-N-(2′R)-2′-(tert-butyl-diphenylsilyloxy)tetracosanoylsphingenine or its (2′S) stereoisomer as the key glycosyl acceptors. The synthetic cerebroside 23 was shown to be identical with the natural product through comparison of their 400-MHz, 1H-n.m.r. spectra, thus providing synthetic evidence for the 2′R configuration of the natural cerebroside.  相似文献   

14.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

15.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

16.
Three new dinormonoterpenoid glucosides, rel-(3R,4R)-3-(1-hydroxypropan-2-yl)-3,4-epoxypentane-1,5-diol-1-O-β-d-glucopyranoside (1), rel-(3R,4S)-3-(1-hydroxypropan-2-yl)-3,4-epoxypentane-1,5-diol-1-O-β-d-glucopyranoside (2), and rel-(3R,4S)-3-(1-hydroxy-2-propen-2-yl)-3,4-epoxypentane-1,5-diol-1-O-β-d-glucopyranoside (3), were isolated from the edible pericarps of Myriopteron extensum (Wight & Arn.) K. Schum. (Asclepiadaceae). Their structures were elucidated by chemical and spectroscopic methods including HRESIMS, 1D and 2D NMR. Dinormonoterpenoid glucosides were reported from Asclepiadaceae for the first time. Compounds 13 were evaluated for their cytotoxicity against five human cancer cell lines HL-60, SMMC-7221, A-549, MCF-7, and SW-480, but they did not exhibit cytotoxicity on the tested cell lines.  相似文献   

17.
An efficient and practical strategy for the synthesis of (3R,4s,5S)-4-(2-hydroxyethyl) piperidine-3,4,5-triol and its N-alkyl derivatives 8af, starting from the d-glucose, is reported. The chiral pool methodology involves preparation of the C-3-allyl-α-d-ribofuranodialdose 10, which was converted to the C-5-amino derivative 11 by reductive amination. The presence of C-3-allyl group gives an easy access to the requisite hydroxyethyl substituted compound 13. Intramolecular reductive aminocyclization of C-5 amino group with C-1 aldehyde provided the γ-hydroxyethyl substituted piperidine iminosugar 8a that was N-alkylated to get N-alkyl derivatives 8bf. Iminosugars 8af were screened against glycosidase enzymes. Amongst synthetic N-alkylated iminosugars, 8b and 8c were found to be α-galactosidase inhibitors while 8d and 8e were selective and moderate α-mannosidase inhibitors. In addition, immunomodulatory activity of compounds 8af was examined. These results were substantiated by molecular docking studies using AUTODOCK 4.2 programme.  相似文献   

18.
The branches of the shrub Aniba lancifolia Kubitzki et Rodrigues (Lauraceae) contain besides 2-hydroxy-4,5- dimethoxyallylbenzene and its dimer cyclohexan-2-allyl- 5-en-4,5-dimethoxy-4-O-(2′-allyl-4′,5′-dimethoxyphenyl)-1-one (lancilin, 2) 6 further novel neolignans: (4S,2′R)- and (4R,2′E)-cyclohexan-2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-guaiacyl)-propyl]-1-one (lancifolins A and B, 3a and 3b), (4S,2′R)- and (4R,2′R)-cyclohexan- 2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-veratryl)-propyl]-1-one (lancifolins C and D, 3c and 3d), (4S,2′R)-and (4R,2′R)-cyclohexan-2-allyl-2,5-dien-4,5-dimethoxy-4-[2′-(1′-piperonyl)-propyl]-1-one (lancifolins E and F, 3e and 3f).  相似文献   

19.
The reaction of Pt(COD)Cl2, where COD is 1,5-cyclooctadiene, with one equivalent of a diamidato-bis(phosphino) Trost ligand ((R,R)-2 = N,N′-bis(2-diphenylphosphino-1-benzoyl)-(1R,2R)-1,2-diaminocyclohexane, (R,R)-N,N′-bis(2-diphenylphosphino-1-naphthoyl)-(1R,2R)-1,2-diaminocyclohexane, or (±)-N,N′-bis(2-diphenylphosphino-1-benzoyl)-1,2-bis(aminobenzene)) in the presence of base afforded square planar diamidato-bis(phosphino) platinum(II) complexes (R,R)-2-Pt, (R,R)-3-Pt, (±)-4-Pt. Characterization of all complexes included the solution and solid state structure determination of each complex based on multinuclear NMR and X-ray analyses, respectively. Stability of the complexes in acid was examined on addition of HCl to (R,R)-2-Pt in chloroform and compared to the unreactive nature of the similar diamidato-bis(phosphino) complex 1-Pt (= 1,2-bis-N-[2′-(diphenylphosphino)benzoyl]diamino-benzene) in the presence of acid. Protonation of the bound amidato nitrogen atoms of (R,R)-2-Pt was observed along with decoordination of the nitrogen atoms from the platinum(II) center producing (R,R)-2-PtCl2 in quantitative yield by NMR analysis. Confirmation of the product was made on comparison of the NMR spectra to that of authentic (R,R)-2-PtCl2 prepared on reaction of Pt(COD)Cl2 with (R,R)-2 in CH2Cl2 and characterized by single-crystal X-ray diffraction analysis and NMR spectroscopy. Results add to the knowledge of rich coordination chemistry of bis(phosphino) ligands with late transition metals, metal-amidato chemistry, and has implications in catalysis.  相似文献   

20.
Chemical investigation of polar lipids from the marine eustigmatophyte microalga Nannochloropsis granulata led to the isolation of six betaine lipid diacylglyceryltrimethylhomoserine (DGTS), namely, (2S)-1,2-bis-O-eicosapentaenoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (1), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (3), (2S)-1-O-eicosapentaenoyl-2-O-palmitoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (4), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (5), and (2S)-1-O-eicosapentaenoyl-2-O-linoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (6). Structures of the isolated DGTSs were elucidated based on both spectroscopic technique and degradation methods. This is the first report of isolation of 1 in pure state, and 26 are all new compounds. The isolated betaine lipids showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Further study suggested that these betaine lipids (16) inhibit NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression, indicating the possible use as an anti-inflammatory agent. This is the first report of DGTS with anti-inflammatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号