首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper describes the preparation of two chalcone/β-cyclodextrin/cellulose-nanocrystals complexes and the study of their antiproliferative activities against two colorectal and two prostatic cancer cell lines. The aim of this work was to enhance hydrosolubility of chalcones thanks to the hydrophilic character of cellulose nanocrystals. These latter were linked, through ionic interactions, to a cationic derivative of β-cyclodextrins whose lipophilic cavity allowed the encapsulation of hydrophobic chalcones: 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (1) and 3′,4,4′,5′-tetramethoxychalcone (2). First, we showed that encapsulation allowed hydrosolubilization of chalcones. Then, chalcone/β-cyclodextrin/cellulose-nanocrystals complexes demonstrated enhanced in vitro antiproliferative activities, compared to the corresponding free-chalcones.  相似文献   

2.
A series of 23 3′,4′,5′-trimethoxychalcone analogues was synthesized and their inhibitory effects on nitric oxide (NO) production in LPS/IFN-γ-treated macrophages, and tumor cell proliferation has been investigated. 4-Hydroxy-3,3′,4′,5′-tetramethoxychalcone (7), 3,4-dihydroxy-3′,4′,5′-trimethoxychalcone (11), 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (14), and 3,3′,4′,5′-tetramethoxychalcone (15) were the most potent growth inhibitory agents on NO production, with an IC50 value of 0.3, 1.5, 1.3 and 0.3 μM, respectively. The tumor cells proliferation assay results revealed that several compounds exhibited potent inhibition activity against different cancer cell lines. The chalcone 15 was the most potent anti-proliferative compound in the series with IC50 values of 1.8 and 2.2 μM toward liver cancer Hep G2 and colon cancer Colon 205 cell lines, respectively. 2,3,3′,4′,5′-Pentamethoxychalcone (1), 3,3′,4,4′,5,5′-hexamethoxychalcone (3), 2,3′,4,4′,5,5′-hexamethoxychalcone (5), 2-hydroxy-3,3′,4′,5′-tetramethoxychalcone (10), 11 and 14 showed significant anti-proliferation actions in Hep G2 and Colon 205 cells with an IC50 values ranging between 10 and 20 μM. Among the tested agents, compound 7 showed selective NO production inhibition (IC50 = 0.3 μM), while has no effect on tumor cell proliferation (IC50 >100 μM). 3,3′,4,4′,5′-Pentamethoxychalcone (2) showed selective anti-proliferation effect in Hep G2 cells, in addition to its potent NO inhibition, however has no such response in Colon 205 cells. In contrast, 3-formyl-3′,4′,5′-trimethoxychalcone (22) showed moderate growth inhibition in Colon 205 cells, while has no such effect on NO production and Hep G2 cells proliferation. These results provide insight into the correlation between some structural properties of 3′,4′,5′-trimethoxychalcones and their in vitro anti-inflammatory and anti-cancer differentiation activity.  相似文献   

3.
A series of benzo[d]imidazo[2,1-b]thiazole-chalcone conjugates (5a-aa) were designed, synthesized and evaluated for their cytotoxic potency against a panel of human cancer cell lines like lung (A-549), breast (MDA MB-231), prostrate (DU-145) and colon cancer (HT-29). Preliminary results revealed that some of these conjugates like 5d and 5u exhibited significant antiproliferative effect against human breast cancer (MDA MB-231) with IC50 values of 1.3 and 1.2 µM respectively. To investigate the mechanistic aspects underlying the activity, the detailed biological studies of these promising conjugates (5d and 5u) were carried out on the MDA MB-231 cancer cells. Flow cytometric analysis revealed that these conjugates induce cell-cycle arrest in the G2/M phase. The tubulin polymerization assay suggests that these conjugates effectively inhibit microtubule assembly. In addition, morphological changes, reactive oxygen species (ROS) detection by 2′, 7′–dichlorofluorescin diacetate (DCFDA) and annexin V–FITC/PI assays indicate that 5d and 5u induces apoptosis. Furthermore, in silico computational studies, including molecular docking studies have been carried out to rationalise the binding modes of these conjugates with the tubulin protein.  相似文献   

4.
Three chalcones and three flavones isolated from the fruit of Merrillia caloxylon (Rutaceae) have been characterised. Two of the flavones and two of the chalcones are related structurally, i.e. 3′,4′,5,7-tetramethoxyflavone with 2′- hydroxy-3,4,4′,6′-tetramethoxychalcone and 3′,4′,5,5′,7-pentamethoxyflavone with 2′,3-dihydroxy-4,4′,6′- trimethoxychalcone. A minor constituent was tentatively characterized as 5-hydroxy-3′,4′,5′,6,7-pentamethoxyflavone and this is accompanied by 2-hydroxy-3,4,4′,5,6′-pentamethoxychalcone and 5-hydroxy-3′,4′,6,7-tetramethoxyfiavone.  相似文献   

5.
A series of halophenols was prepared by the reaction of bis(hydroxyphenyl)methanes with effective halogenating agents such as bromine and sulfuryl chloride. One of these compounds, a biologically active halophenol—2,2′,3,3′-tetrabromo-4,4′,5,5′-tetrahydroxydiphenylmethane (1)—frequently isolated from red algae, was synthesized for the first time. Other halophenols included several novel compounds, together with known derivatives that were synthesized from the phenolic intermediates, bis(3,4-dihydroxyphenyl)methane (5) and bis(2-hydroxyphenyl)methane (14). All of the synthesized compounds were tested for antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. The preliminary structure–activity relationship was investigated in order to determine the essential structural requirements for their antimicrobial activity. Of all these halophenols, 2,2′,3,3′,6-pentabromo-4,4′,5,5′-tetrahydroxydiphenylmethane (8) was found to be the most active against Candida albicans, Aspergillus fumigatus, Trichophyton rubrum, and Trichophyton mentagrophytes while 3,3′,5,5′-tetrachloro-2,2′-dihydroxydiphenylmethane (18) exerted a powerful antibacterial effect against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Proteus vulgaris, and Salmonella typhimurium.  相似文献   

6.
A series of phenstatin/isocombretastatin-oxindole conjugates was synthesized and tested for their cytotoxic activity against five human cancer cells such as prostate (DU-145), lung (A549), colon (HT-29), breast (MCF-7), liver (HepG2) cancer cells with IC50 values ranging from 0.049 to 38.90 μM. Amongst them, two conjugates (5c and 5d) showed broad spectrum of antiproliferative efficacy on lung cancer cells with an IC50 value of 79 nM and 93 nM, respectively, whereas on colon cancer cells with an IC50 values 45 nM and 49 nM, respectively. In addition, cell cycle assay revealed that these conjugates (5c and 5d) arrest at the G2/M phase and leads to apoptotic cell death which was confirmed by Annexin V-FITC and mitochondrial membrane depolarization. Further, the tubulin polymerization assay analysis results suggest that these conjugates particularly 5c and 5d exhibit significant inhibitory effect on the tubulin assembly with an IC50 value of 1.23 μM and 1.01 μM, respectively. Molecular docking studies indicated that these compounds (5c and 5d) occupy the colchicine binding site of the tubulin.  相似文献   

7.
Treatment of sucrose 2,3,3′,4′,6-penta-acetate (1) with methanesulphonyl chloride-N,N-dimethylformamide (reagent A) gave the 1′,4,6′-trichloride 2, the 1′-O-formyl-4,6′-dichloride 3, the 4,6′-dichloride 4, and the 1′,4-di-O-formyl-6′-chloride 5. De-esterification of 3 afforded the unsubstituted 4,6′-dichloride 6 which, on acetylation, gave the corresponding hexa-acetate 7, also prepared by acetylation of 4. In compounds 2, 3, and 4, substitution at C-4 by chloride ion occurred with inversion of configuration. The structure of 5 was confirmed by conversion into the known 6′chloro-6′-deoxysucrose hepta-acetate by de-esterification followed by acetylation. Treatment of sucrose 1′,2,3,3′,4′,6′-hexa-acetate (10) with the reagent gave the 4,6-dichloride 11 and 4-O-formyl-6-chloride 12. The formyl group in 12 was selectively removed by using an anion-exchange resin to give 16. De-esterification of 12 with methanolic sodium methoxide gave 6-chloro-6-deoxysucrose (13) which, on acetylation and benzoylation, afforded the hepta-acetate 14 and the hepta-benzoate 15, respectively. Alternatively, 15 was prepared by the reaction of 1′,2,3,3′,4,4′,6′-hepta-O-benzoylsucrose with reagent A. Treatment of 14 with sodium methoxide in methanol followed by acetylation gave 3,6-anhydrosucrose hexa-acetate (24). Reaction of sucrose 2,3,3′,4,4′-pentabenzoate (17) with reagent A gave the known 1′,6,6′-trichloro-1′,6,6′-trideoxysucrose pentabenzoate (18) and 1′-O-formyl-6,6′-dichloride 19. Treatment of 19 with anion-exchange resins selectively removed the formyl group to give 20. The structure of 20 was confirmed by conversion into the 1′-chlorosulphate-6,6′-dichloride (21). Treatment of sucrose 1′,2,3,3′,4,4′-hexabenzoate (22) with reagent A gave the expected 6,6′-dichloride (23).  相似文献   

8.
The reference standards methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate (5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-methoxybenzamide (5c), and their corresponding desmethylated precursors 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoic acid (6a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-hydroxybenzamide (6b), were synthesized from 5-amino-2,2-difluoro-1,3-benzodioxole and 3-substituted benzoic acids in 5 and 6 steps with 33% and 11%, 30% and 7% overall chemical yield, respectively. Carbon-11-labeled casein kinase 1 (CK1) inhibitors, [11C]methyl 3-((2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)carbamoyl)benzoate ([11C]5a) and N-(2,2-difluoro-5H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d]imidazol-6-yl)-3-[11C]methoxybenzamide ([11C]5c), were prepared from their O-desmethylated precursor 6a or 6b with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–45% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740?GBq/μmol with a total synthesis time of ~40-min from EOB.  相似文献   

9.
Both enantiomers of 2,2′-dihydroxy-4,4′,5,5′,6,6′-hexamethybiphenyl (2), a potentially useful chiral synthon, were obtained with >99% ee in high enantioselectivity by cholesterol esterase or porcine pancreas lipase (PPL)-mediated hydrolysis of the corresponding (±)-dipentanoate or (±)-dihexanoate, respectively. Absolute configuration of (S)-3-bromo-2,6′-dimethoxy-4,5,6,2′,3′,4′-hexamethyl-biphenyl (2h) was determined by X-ray analysis.  相似文献   

10.
Six flavonoids, five of them novel, have been isolated from the whole stem of Popowia cauliflora and identified as: baicalein trimethyl ether, 5-hydroxy-6,7-dimethoxyflavone, 5,7,8-trimethoxyflavanone, 2′-hydroxy-3′,4′,6′-trimethoxychalcone, 2′,3′,4′,6′-tetramethoxychalcone and 2′,4-dihydroxy-3′,4′,6′-trimethoxychalcone, on the basis of spectral data and simple chemical modifications. The value of 13C NMR in assigning the positions of methoxy substituents is briefly discussed.  相似文献   

11.
To discover more derivatives with better glucose-lowering efficacy compared with berberine, twenty-three novel compounds with 4,7,12,12a-tetrahydro-5H-thieno[3′,2′:3,4]pyrido[1,2-b]isoquinoline or 5,8,12,12a-tetrahydro-6H-thieno[2′,3′:4,5]pyrido[2,1-a]isoquinoline cores were designed, synthesized, and biologically evaluated in vitro in continuation of our previous work on indirect activators of adenosine 5′-monophosphate-activated protein kinase (AMPK). Nine compounds effectively stimulated glucose consumption (>2.3-fold at 10 μM) in L6 myotube cells, and two compounds (4d and 4s) exhibited superior inhibitory activity (<57.6% at 5 μM) compared with berberine on gluconeogenesis in rat primary hepatocytes. Additionally, these compounds significantly up-regulated the phosphorylation of AMPK and its substrate, acetyl-CoA carboxylase (ACC) and slightly decreased the mitochondrial membrane potential in L6 myotube cells.  相似文献   

12.
A series of 1,2,3-triazole linked aminocombretastatin conjugates were synthesized and evaluated for cytotoxicity, inhibition of tubulin polymerization and apoptosis inducing ability. Most of the conjugates exhibited significant anticancer activity against some representative human cancer cell lines and two of the conjugates 6d and 7c displayed potent cytotoxicity with IC50 values of 53 nM and 44 nM against A549 human lung cancer respectively, and were comparable to combretastatin A-4 (CA-4). SAR studies revealed that 1-benzyl substituted triazole moiety with an amide linkage at 3-position of B-ring of the combretastatin subunit are more active compared to 2-position. G2/M cell cycle arrest was induced by these conjugates 6d and 7c and the tubulin polymerization assay (IC50 of 1.16 μM and 0.95 μM for 6d and 7c, respectively) as well as immunofluorescence analysis showed that these conjugates effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Colchicine competitive binding assay suggested that these conjugates bind at the colchicine binding site of tubulin as also observed from the docking studies. Further, mitochondrial membrane potential, ROS generation, caspase-3 activation assay, Hoechst staining and DNA fragmentation analysis revealed that these conjugates induce cell death by apoptosis.  相似文献   

13.
A flexible approach to previously unknown spirofused and linked 1,3,4-thiadiazine derivatives of steroids with selective control of heterocyclization patterns is disclosed. (N-Arylcarbamoyl)spiroandrostene-17,6′ [1,3,4]thiadiazines and (N-arylcarbamoyl)17-[1′,3′,4′]thiadiazine-substituted androstenes, novel types of heterosteroids, were prepared from 16β,17β-epoxypregnenolone and 21-bromopregna-5,16-dien-20-one in good to high yields by the treatment with oxamic acid thiohydrazides. The synthesized compounds were screened for antiproliferative activity against the human androgen receptor-positive prostate cancer cell line 22Rv1. Most of (N-arylcarbamoyl)17-[1′,3′,4′]thiadiazine-substituted androstenes exhibit better antiproliferative potency (IC50 = 2.1–6.6 µM) than the antiandrogen bicalutamide. Compounds 7d with IC50 = 3.0 μM and 7j with IC50 = 2.1 μM proved to be the most active in the series under study. Lead synthesized compound 7j downregulates AR expression and activity in 22Rv1 cells. NF-κB activity is also blocked in 7j-treated 22Rv1 cells. Apoptosis is considered as a possible mechanism of 7j-induced cell death.  相似文献   

14.
A series of 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides of both pyrimidine and purine nucleobases were synthesized in an efficient manner starting from commercially available L-pyroglutamic acid via glycosylation of difluorinated pyrrolidine derivative 15. Several 4′-azanucleosides were prepared as a separable mixture of α- and β-anomers. The 6-chloropurine analogue was obtained as a mixture of N7 and N9 regioisomers and their structures were identified based on NOESY and HMBC spectral data. Among the 4′-azanucleosides tested as HIV-1 inhibitors in primary human lymphocytes, four compounds showed modest activity and the 5-fluorouracil analogue (18d) was found to be the most active compound (EC50 = 36.9 μM) in this series. None of the compounds synthesized in this study demonstrated anti-HCV activity.  相似文献   

15.
Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) lead to serious liver diseases worldwide. Co-infection with HBV and HCV is very common and is associated with increased risk of liver pathogenesis, liver cancer, and liver failure. Several 5-substituted 3′-fluoro (or chloro) (14, 6, 7, 1719) and 2′,3′-difluoro 2′,3′-dideoxynucleosides (15 and 16) were synthesized and evaluated for in vitro antiviral activities against duck hepatitis B virus (DHBV), human hepatitis B virus, and hepatitis C virus. Of these compounds 4, 7, 17, and 19 demonstrated moderate anti-HBV activity, and 2, 4, 7, 8, and 19 were weak inhibitors of HCV. Although 5-iodo derivative (7) was most inhibitory against HCV, it exhibited a reduction in cellular RNA levels in Huh-7 cells. The 5-hydroxymethyl-3′-fluoro-2′,3′-dideoxyuridine (4) and 1-(3-chloro-2,3-dideoxy-β-d-erythro-pentofuranosyl)-5-fluorouracil (19) provided the most inhibition of both viruses without cytotoxicity.  相似文献   

16.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

17.
New series of thiazolo[4,5-d]pyridazin and imidazo[2′,1′:2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their in vitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 μM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 μM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (2325) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2′,1′:2,3]-thiazolo[4,5-d]pyridazine (4354) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.  相似文献   

18.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

19.
We designed and synthesized human telomere alkylating N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates (16). The C-type conjugates 13 possessed a chlorambucil moiety at the C terminus, whereas the N-type conjugates 46 had one of these moieties at the N terminus. The DNA alkylating activity of these conjugates was evaluated by high-resolution denaturing polyacrylamide gel electrophoresis using a 220 bp DNA fragment containing the human telomere repeat sequence 5′-(GGGTTA)4-3′/5′-(TAACCC)4-3′. C-type conjugates are designed to alkylate the G-rich-strand-containing 5′-GGGTTA-3′ and N-type conjugates were designed to alkylate the complementary C-rich strand-containing 5′-TAACCC-3′ sequence. The difference between conjugates 13 and 46 lies in the linker region between the polyamide moiety and chlorambucil. Conjugates 1 and 4 efficiently alkylated the 5′-GGTTAGGGTTA-3′ and 5′-CCCTAACCCTAA-3′ sequences, respectively, by recognizing 11 bp in the presence of distamycin A (Dist), in a heterotrimeric manner: one long alkylating polyamide conjugate (16) and two short partners (Dist).  相似文献   

20.
Twenty-two known compounds were isolated from the 95% alcohol extract of the fruits of Illicium simonsii Maxim, including seven sesquiterpenoids (1622) and fifteen lignans (115). In the present research, compounds 3 ((7S,8R,8′S)-3,3′-dimethoxy-4,4′,9-trihydroxy-7,9′-epoxylignan-7′-one), 4 ((−)-(7′S,8S,8′R)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one), 5 ((+)-8-hydroxypinoresinol), 6 ((+)-8-hydroxymedioresinol), 8 ((2R,3R)-2β-(4″-hydroxy-3″-methoxybenzyl)-3α-(4′-hydroxy-3′-methoxybenzyl)-γ-butyrolactone 2-O-(β-D-glucopyranoside), 12 ((+)-8-methoxyisolariciresinol), 13 (α-conidendrin), 14 (boehmenan) and 15 (7R,8R,7′E-7′,8′-didehydro-4,7,9,9′- tetrahydroxy-3-methoxy-8-O-4′-neolignan) were reported from the Illicium genus for the first time, and compounds 1 (simulanol), 7 ((+)-secoisolariciresinol monoglucoside), 10 ((+)-9-O-β-D-glucopyranosyl lyoniresinol), 11 ((+)-isolariciresinol), 18 (neoanisatin), 19 (veranisatin A), 20 (4,5-d2-8′-oxo-dihydrophaseic acid) and 22 (Oligandrumin A) were firstly isolated from the plant. Their structures were elucidated on the basis of NMR spectroscopic and mass spectrometric data. Moreover, the chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号