首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An effective intramolecular C–H arylation reaction catalyzed by a bimetallic catalytic system Pd(OAc)2/CuI for the synthesis of fluorine-substituted carbazoles from corresponding N-phenyl-2-haloaniline derivatives under ligand free conditions is demonstrated. The established method is effective for both N-phenyl-2-bromoaniline and N-phenyl-2-chloroaniline, and requires the low loading of Pd(OAc)2 (0.5 mol %). A series of new fluorinated carbazoles were synthesized in excellent yields using the protocol (>83%, 19 examples) and were fully characterized by 1H, 13C and 19F NMR spectral data, HRMS and elemental analysis. All compounds were evaluated for their antibacterial activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and methicillin-resistant S. aureus with resistance to gentamicin) by serial dilution technique. All tested compounds showed antibacterial activity against three test strains (S. aureus, B. subtilis and MRSA), and most of these compounds displayed pronounced antimicrobial activities against these three strains with low MIC values ranging from 0.39 to 6.25 μg/mL. Among them, compounds 7 and 14 exhibited potent inhibitory activity better than reference drugs meropenem and streptomycin. Three compounds (2, 4 and 5) showed antibacterial activity against E. coli. with MIC values from 12.5 to 25 μg/mL.  相似文献   

2.
Two new (1–2) and one known (3) benzophenone derivatives, along with five known ambuic acid analogues (4–8) were isolated from the solid cultures of a Pestalotiopsis sp. Compound 2 represented both enantiomeric and atropisomeric isomers, and the absolute configurations of enantiomers [(−)-2 and (+)-2] were determined by electronic circular dichroism (ECD) calculations. All the isolates were evaluated for their antimicrobial and cytotoxic activities. Chlorinated compounds 2 and 3 showed potent antimicrobial activities against four pathogenic bacteria, and compound 3 also displayed strong antifungal activity against Candida glabrata (ATCC 90030) with an MIC50 value of 2.6 ± 0.1 μg/mL. Compound 1 exhibited moderate cytotoxicity against U2OS and MCF-7 with IC50 values of 11.6 and 16.8 μM, respectively.  相似文献   

3.
The azole pharmacophore is still considered a viable lead structure for the synthesis of more efficacious and broad spectrum antimicrobial agents. Potential antibacterial and antifungal activities are encountered with some tetrazoles. Therefore, this study presents the synthesis and antimicrobial evaluation of a new series of substituted tetrazoles that are structurally related to the famous antimicrobial azole pharmacophore. A detailed discussion of the structural elucidation of some of the newly synthesized compounds is also described. Antimicrobial evaluation revealed that twenty compounds were able to display variable growth inhibitory effects on the tested Gram positive and Gram negative bacteria with special efficacy against the Gram positive strains. Meanwhile, six compounds exhibited moderate antifungal activity against Candida albicans and Aspergillus fumigatus. Structurally, the antibacterial activity was encountered with tetrazoles containing a phenyl substituent, while the obtained antifungal activity was confined to the benzyl variants. Compounds 16, 18, 24 and 27 were proved to be the most active antibacterial members within this study with a considerable broad spectrum against all the Gram positive and negative strains tested. A distinctive anti-Gram positive activity was displayed by compound 18 against Staphylococcus aureus that was equipotent to ampicillin (MIC 6.25 μg/mL).On the other hand, twelve compounds were selected to be screened for their preliminary anticonvulsant activity against subcutaneous metrazole (ScMet) and maximal electroshock (MES) induced seizures in mice. The results revealed that five compounds namely; 3, 5, 13, 21, and 24 were able to display noticeable anticonvulsant activity in both tests at 100 mg/kg dose level. Compounds 5 and 21 were proved to be the most active anticonvulsant members in this study with special high activity in the ScMet assay (% protection: 100% and 80%, respectively).  相似文献   

4.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

5.
Nigrosphaerin A, a new isochromene derivative (1), was isolated from the endophytic fungus Nigrospora sphaerica and chemically identified as 3-(3,4-dihydroxyphenyl)-4,6,8-trihydroxy-1H-isochromen-1-one-6-O-β-d-glucopyranoside. In addition nineteen known compounds (220) were isolated from the same fungus and chemically identified. Compounds (13, 5, and 716) were isolated for the first time from this fungus. In vitro antileukemic, antileishmanial, antifungal, antibacterial and antimalarial activities of (120) were examined. Compounds 5, 7, 9 and 10 showed good antileukemic activity against HL60 cells with IC50 values of 0.03, 0.39, 0.2 and 0.4 μg/mL, respectively and against K562 cells with IC50 values of 0.35, 0.35, 0.49 and 0.01 μg/mL, respectively. Compounds 3, 4 and 6 showed moderate antileishmanial activity with IC50 values of 30.2, 26.4 and 36.4 μg/ml, respectively. Compound 7 showed moderate antifungal activity against Cryptococcus neoformans with IC50 value of 14.8 μg/mL.  相似文献   

6.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

7.
In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50  10 μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45 μg/ml respectively) with good safety index.Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.  相似文献   

8.
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. Some of them showed significant antibacterial activity against Gram-positive organism, Gram-negative organism and fungus. Out of these compounds, 4-(2-(3-chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0 μg/mL against Staphylococcus aureus, 4.3 μg/mL against Escherichia coli, 1.5 μg/mL against Pseudomonas aeruginosa and 1.2 μg/mL against Candida albicans. Our data disclosed that MIC50 values against whole cell bacteria are positive correlation with MIC50 values against tyrosyl-tRNA synthetase. Meanwhile, molecular docking of d40 into S. aureus tyrosyl-tRNA synthetase active site was also performed, and the inhibitor tightly fitting the active site might be an important reason why it has high antimicrobial activity.  相似文献   

9.
1-((Substituted)methyl)quinoxaline-2,3(1H,4H)-dione (2ae) and 1-((substituted)acryloyl)quinoxaline-2,3(1H,4H)-dione (4ac) were synthesized from quinoxaline-2,3(1H,4H)-dione 1 and evaluated for their antimicrobial activities. Results of the antitubercular screening against Mycobacterium tuberculosis H37Rv showed that the compounds 2b, 3, and 4a were the most effective, with minimum inhibitory concentrations of 8.012, 8.561, and 8.928 μg/ml, respectively. All the compounds exhibited significant antibacterial and considerable antifungal activities.  相似文献   

10.
3-Arylfuran-2(5H)-one, a novel antibacterial pharmacophore targeting tyrosyl-tRNA synthetase (TyrRS), was hybridized with the clinically used fluoroquinolones to give a series of novel multi-target antimicrobial agents. Thus, twenty seven 3-arylfuran-2(5H)-one-fluoroquinolone hybrids were synthesized and evaluated for their antimicrobial activities. Some of the hybrids exhibited merits from both parents, displaying a broad spectrum of activity against resistant strains including both Gram-negative and Gram-positive bacteria. The most potent compound (11) in antibacterial assay shows MIC50 of 0.11 μg/mL against Multiple drug resistant Escherichia coli, being about 51-fold more potent than ciprofloxacin. The enzyme assays reveal that 11 is a potent multi-target inhibitor with IC50 of 1.15 ± 0.07 μM against DNA gyrase and 0.12 ± 0.04 μM against TyrRS, respectively. Its excellent inhibitory activities against isolated enzymes and intact cells strongly suggest that 11 deserves to further research as a novel antibiotic.  相似文献   

11.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

12.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   

13.
Nine dihydroartemisinin acetal dimers (614) with diversely functionalized linker units were synthesized and tested for in vitro antiprotozoal, anticancer and antimicrobial activity. Compounds 6, 7 and 11 [IC50: 3.0–6.7 nM (D6) and 4.2–5.9 nM (W2)] were appreciably more active than artemisinin (1) [IC50: 32.9 nM (D6) and 42.5 nM (W2)] against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of the malaria parasite, Plasmodium falciparum. Compounds 10, 13 and 14 displayed enhanced anticancer activity in a number of cell lines compared to the control drug, doxorubicin. The antifungal activity of 7 and 12 against Cryptococcus neoformans (IC50: 0.16 and 0.55 μM, respectively) was also higher compared to the control drug, amphotericin B. The antileishmanial and antibacterial activities were marginal. A number of dihydroartemisinin acetal monomers (1517) and a trimer (18) were isolated as byproducts from the dimer synthesis and were also tested for biological activity.  相似文献   

14.
A series of novel 6-methoxy-2-(piperazin-1-yl)-4H-chromen-4-one and 5,7-dimethoxy-2-(piperazin-1-ylmethyl)-4H-chromen-4-one derivatives of biological interest were prepared and screened for their pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Among all the compound screened (5aj and 10kt), the compounds 5c, 5g, 5h, 10l, 10m, 10n and 10r found to have promising anti-inflammatory activity (up to 65–87% TNF-α and 70–93% IL-6 inhibitory activity) at concentration of 10 μM with reference to standard dexamethasone (71% TNF-a and 84% IL-6 inhibitory activities at 1 μM) while the compounds 5b, 5i, 5j, 10s and 10t found to be potent antimicrobial agent showing even 2 to 2.5-fold more potency than that of standard ciprofloxacin and miconazole at the same MIC value of 10 μg/mL.  相似文献   

15.
A series of dicationic diaryl ethers have been synthesized and evaluated for in vitro antibacterial activities, including drug resistant bacterial strains. Most of these compounds have shown potent antibacterial activities. Several compounds, such as piperidinyl and thiomorpholinyl compounds 9e and 9l, improved the antimicrobial selectivity and kept potent anti-MRSA and anti-VRE activity. The most potent bis-indole diphenyl ether 19 exhibited anti-MRSA MIC value of ?0.06 μg/mL and enhanced antimicrobial selectivity.  相似文献   

16.
Chemical investigation of the roots of Vernonia guineensis (Asteraceae) afforded a new stigmastane derivative, vernoguinoside A (1) and the known vernoguinoside (2), stigmasterol 3-O-β-d-glucoside (3) and sitosterol 3-O-β-d-glucoside (4). Their structures were elucidated by spectroscopic analysis. Antimicrobial activities of 13 and CH2Cl2–MeOH (1:1) extract were evaluated against three bacteria species (Salmonella typhi, Staphylococcus aureus and Shigella flexneri) and three yeasts species (Candida albicans, Candida parapsilosis and Cryptococcus neoformans). Compounds 1 and 2 exhibited both antibacterial and antifungal activities that varied between the microbial species (MIC = 7.81–125 μg/mL) while S. flexneri and C. albicans were sensitive to all the tested compounds.  相似文献   

17.
New series of 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one thiosemicarbazones (916) obtained from the corresponding 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones (18) upon cyclization with ethylbromoacetate in the presence of sodium acetate–acetic acid buffer afforded novel 2-[(2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazono]-1,3-thiazolidin-4-ones (1724). The synthesized compounds have been characterized by their elemental, analytical and spectral studies. Besides, the reported compounds were screened for their antibacterial and antifungal activities against a spectrum of microbial organisms. These studies proved that compounds 11/18/20/23 against Staphylococcus aureus, 19/20/24 against Salmonella typhi show maximum inhibition potency at low concentration (6.25 μg/ml) whereas 18/19 against Candida albicans and 19/20/21 against Rhizopus sp. showed beneficial antifungal activity at minimum concentration.  相似文献   

18.
8-Hydroxyquinoline (8HQ) compounds have been reported to possess diverse bioactivities. In recent years, drug repositioning has gained considerable attention in drug discovery and development. Herein, 8HQ (1) and its derivatives (2–9) bearing various substituents (amino, nitro, cyano and halogen) were investigated for their antimicrobial against 27 microorganisms (agar dilution method) and antioxidant (DPPH method) activities. The parent 8HQ (1) exerted a highly potent antimicrobial activity against Gram-positive bacteria including diploid fungi and yeast with MIC values in the range of 3.44–13.78 μM. Moreover, the halogenated 8HQ, especially 7-bromo-8HQ (4) and clioquinol (6), displayed a high antigrowth activity against Gram-negative bacteria compared with the parent compound (1). Apparently, the derivatives with a relatively high safely index, e.g., nitroxoline (2), exhibited strong antibacterial activity against Aeromonas hydrophila (MIC=5.26 μM) and selectively inhibited the growth of P. aeruginosa with the MIC value of 84.14 μM; cloxyquin (3) showed a strong activity against Listseria monocytogenes and Plesiomonas shigelloides with MIC values of 5.57 and 11.14 μM, respectively. Most compounds displayed an antioxidant activity. Specifically, 5-amino-8HQ (8) was shown to be the most potent antioxidant (IC50=8.70 μM) compared with the positive control (α-tocopherol) with IC50 of 13.47 μM. The findings reveal that 8HQ derivatives are potential candidates to be further developed as antimicrobial and antioxidant agents.  相似文献   

19.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

20.
In this study, as a continuation of our research for new (arylalkyl)imidazole anticonvulsant compounds, the design, synthesis and anticonvulsant/antimicrobial activity evaluation of a series of 2-acetylnaphthalene derivatives have been described. Molecular design of the compounds has been based on the modification of nafimidone [1-(2-naphthyl)-2-(imidazol-1-yl)ethanone], which is a representative of the (arylalkyl)imidazole anticonvulsant compounds as well as its active metabolite, nafimidone alcohol (3, 4). In general, these compounds were variously substituted at the alkyl chain between naphthalene and imidazole rings and subjected to some other modifications to evaluate additional structure–activity relationships. The anticonvulsant activity profile of those compounds was determined by maximal electroshock seizure (MES) and subcutaneous metrazol (scM) seizure tests, whereas their neurotoxicity was examined using rotarod test. All the ester derivatives of nafimidone alcohol (5ah), which were designed as prodrugs, showed anticonvulsant activity against MES-induced seizure model. Four of the most active compounds were chosen for further anticonvulsant evaluations. Quantification of anticonvulsant protection was calculated via the ip route (ED50 and TD50) for the most active candidate (5d). Observed protection in the MES model was 38.46 mg kg?1 and 123.83 mg kg?1 in mice and 20.44 mg kg?1, 56.36 mg kg?1 in rats, respectively. Most of the compounds with imidazole ring also showed antibacterial and/or antifungal activities to a certain extent in addition to their anticonvulsant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号