首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1.  相似文献   

2.
Histone lysine demethylases (KDMs) have drawn much attention as targets of therapeutic agents. KDM5 proteins, which are Fe(II)/α-ketoglutarate-dependent demethylases, are associated with oncogenesis and drug resistance in cancer cells, and KDM5-selective inhibitors are expected to be anticancer drugs. However, few cell-active KDM5 inhibitors have been reported and there is an obvious need to discover more. In this study, we pursued the identification of highly potent and cell-active KDM5-selective inhibitors. Based on the reported KDM5 inhibitors, we designed several compounds by strategically merging two fragments for competitive inhibition with α-ketoglutarate and for KDM5-selective inhibition. Among them, compounds 10 and 13, which have a 3-cyano pyrazolo[1,5-a]pyrimidin-7-one scaffold, exhibited strong KDM5-inhibitory activity and significant KDM5 selectivity. In cellular assays using human lung cancer cell line A549, 10 and 13 increased the levels of trimethylated lysine 4 on histone H3, which is a specific substrate of KDM5s, and induced growth inhibition of A549 cells. These results should provide a basis for the development of cell-active KDM5 inhibitors to highlight the validity of our inhibitor-based fragment merging strategy.  相似文献   

3.
Lysine-specific demethylase 1 (LSD1) is a flavin-dependent enzyme that removes methyl groups from mono- or dimethylated lysine residues at the fourth position of histone H3. We have previously reported several histone H3 peptides containing an LSD1 inactivator motif at Lys-4. In this study, histone H3 peptides having a trans-2-phenylcyclopropylamine (PCPA), a 2,5-dihydro-1H-pyrrole, and a 1,2,3,6-tetrahydropyridine moiety at Lys-4 were prepared along with related compounds possessing a shorter side chain at the fourth position. Enzymatic assays showed that PCPA peptides containing a longer side chain, which can react with FAD in the active site, are potent LSD1-selective inhibitors.  相似文献   

4.
Herein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved. Further structural optimization and structure-activity relationship (SAR) analysis were carried out to the more selective one, compound 2, which led to the discovery of several new KDM4D inhibitors. Among them, compound 10r is the most potent one with an IC50 value of 0.41 ± 0.03 μM against KDM4D. Overall, compound 10r could be taken as a good lead compound for further studies.  相似文献   

5.
DNA and histone chromatin modifying enzymes play a crucial role in chromatin remodeling in several biological processes. Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a relevant player in the regulation of a broad spectrum of biological processes including development, cellular differentiation, embryonic pluripotency and cancer. Here, we review recent insights on the role of LSD1 activity in chromatin regulatory complexes, its functional role in the epigenetic changes during embryonic development, in the establishment and maintenance of stemness and during cancer progression.  相似文献   

6.
Lysine specific demethylase 1 (LSD1), which is overexpressed in several human cancers and acts as a demethylase of histone 3, lysine 4 and lysine 9, has become an attractive therapeutic target for cancer therapy. Based on our previous systematic studies, withanolides are important secondary metabolites mostly from the Solanaceae family of plants, which are crucial agents for cancer treatment. Here, withanolides were characterized as LSD1 inhibitors, especially withaferin A, with an IC50 value of 3.04 μM. In vitro bioactivity assays and virtual molecular docking indicated that withaferin A could inhibit MDA-MB-231 cell migration by inhibiting intracellular LSD1 activity. These findings provide a new withanolide-based natural molecular skeleton for LSD1 inhibitors with potential antitumor activity.  相似文献   

7.
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.  相似文献   

8.
9.
10.
11.
Lysine specific demethylase 1 (LSD1) plays a vital role in epigenetic regulation of gene activation and repression in several human cancers and is recognized as a promising antitumor therapeutic target. In this paper, a series of 4-(4-benzyloxy)phenoxypiperidines were synthesized and evaluated. Among the tested compounds, compound 10d exhibited the potent and reversible inhibitory activity against LSD1 in vitro (IC50 = 4 μM). Molecular docking was conducted to predict its binding mode. Furthermore, 10d displayed it could inhibit migration of HCT-116 colon cancer cells and A549 lung cancer cells. Taken together, 10d deserves further investigation as a hit-to-lead for the treatment of LSD1 associated tumors.  相似文献   

12.
Early studies demonstrated that over expression of indoleamine 2,3-dioxygenase (IDO1) in tumor microenvironment results in tumor immune escape. Herein, in order to simplify the structure of two kinds of IDO1 inhibitors from marine alkaloid, Exiguamine A and Tsitsikammamines, we designed, synthesized a series of 1H-indole-4,7-dione derivatives and evaluated their inhibitory activity in IDO1 enzyme and in IFN-γ stimulated Hela cells in vitro. The structure-activity relationship demonstrated that 5-(pyridin-3-yl)-1H-indole-4,7-dione is a promising scaffold for IDO1 inhibitors and most compounds with this core showed moderate inhibition potency at micromole level. Our further enzyme kinetics experiments reveal that these new developed compounds might act as reversible competitive inhibitors of IDO1.  相似文献   

13.
Epithelial–mesenchymal transition (EMT) is a transdifferentiation programme. The mechanism underlying the epigenetic regulation of EMT remains unclear. In this study, we identified that Snail1 interacted with histone lysine‐specific demethylase 1 (LSD1). We demonstrated that the SNAG domain of Snail1 and the amine oxidase domain of LSD1 were required for their mutual interaction. Interestingly, the sequence of the SNAG domain is similar to that of the histone H3 tail, and the interaction of Snail1 with LSD1 can be blocked by LSD1 enzymatic inhibitors and a histone H3 peptide. We found that the formation of a Snail1–LSD1–CoREST ternary complex was critical for the stability and function of these proteins. The co‐expression of these molecules was found in cancer cell lines and breast tumour specimens. Furthermore, we showed that the SNAG domain of Snail1 was critical for recruiting LSD1 to its target gene promoters and resulted in suppression of cell migration and invasion. Our study suggests that the SNAG domain of Snail1 resembles a histone H3‐like structure and functions as a molecular hook for recruiting LSD1 to repress gene expression in metastasis.  相似文献   

14.
Post-translational modifications of autophagy-related (ATG) genes are necessary to modulate their functions. However, ATG protein methylation and its physiological role have not yet been elucidated. The methylation of non-histone proteins by SETD7, a SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. Here we present evidence that the precise activity of ATG16L1 protein in hypoxia/reoxygenation (H/R)-treated cardiomyocytes is regulated by a balanced methylation and phosphorylation switch. We first show that H/R promotes autophagy and decreases SETD7 expression, whereas autophagy inhibition by 3-MA increases SETD7 level in cardiomyocytes, implying a tight correlation between autophagy and SETD7. Then we demonstrate that SETD7 methylates ATG16L1 at lysine 151 while KDM1A/LSD1 (lysine demethylase 1A) removes this methyl mark. Furthermore, we validate that this methylation at lysine 151 impairs the binding of ATG16L1 to the ATG12–ATG5 conjugate, leading to inhibition of autophagy and increased apoptosis in H/R-treated cardiomyocytes. However, the cardiomyocytes with shRNA-knocked down SETD7 or inhibition of SETD7 activity by a small molecule chemical, display increased autophagy and decreased apoptosis following H/R treatment. Additionally, methylation at lysine 151 inhibits phosphorylation of ATG16L1 at S139 by CSNK2 which was previously shown to be critical for autophagy maintenance, and vice versa. Together, our findings define a novel modification of ATG16L1 and highlight the importance of an ATG16L1 phosphorylation-methylation switch in determining the fate of H/R-treated cardiomyocytes.  相似文献   

15.
hSMG-1 kinase plays a dual role in a highly conserved RNA surveillance pathway termed nonsense-mediated RNA decay (NMD) and in cellular genotoxic stress response. Since deregulation of cellular responses to stress contributes to tumor growth and resistance to chemotherapy, hSMG-1 is a potential target for cancer treatment. From our screening efforts, we have identified pyrimidine derivatives as hSMG-1 kinase inhibitors. We report structure-based optimization of this pan-kinase scaffold to improve its biochemical profile and overall kinome selectivity, including mTOR and CDK, to generate the first reported selective hSMG-1 tool compound.  相似文献   

16.
Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that has been approved for the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). In this study, osimertinib was characterized as a LSD1 inhibitor for the first time with an IC50 of 3.98 ± 0.3 μM and showed LSD1 inhibitory effect at cellular level. These findings provide new molecular skeleton for dual inhibitor for LSD1 and EGFR. Osimertinib could serve as a lead compound for further development for anti-NSCLC drug discovery with dual targeting.  相似文献   

17.
Histone lysine specific demethylase 1 (LSD1) is overexpressed in diverse hematologic disorders and recognized as a promising target for blood medicines. In this study, molecular docking-based virtual screening united with bioevaluation was utilized to identify novel skeleton of 5-arylidene barbiturate as small-molecule inhibitors of LSD1. Among the synthesized derivatives, 12a exhibited reversible and potent inhibition (IC50?=?0.41?μM) and high selectivity over the MAO-A and MAO-B. Notably, 12a strongly induced differentiation effect on acute promyelocytic leukemia NB4 cell line and distinctly escalated the methylation level on histone 3 lysine 4 (H3K4). Our findings indicate that 5-arylidene barbiturate may represent a new skeleton of LSD1 inhibitors and 12a deserve as a promising agent for the further research.  相似文献   

18.
Abstract

A series of 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives, N5a–5l, was designed, synthesized and evaluated for their FGFR1-inhibition ability as well as cytotoxicity against three cancer cell lines (H460, B16F10 and A549) in vitro. Several compounds displayed good-to-excellent potency against these cancer cell lines compared to SU5402. Structure–activity relationship analyses indicated that compounds with a rigid structure and more heteroatoms at the side chain of the parent ring were more effective than those without these substitutions. The compound N5g (37.4% FGFR1 inhibition at 1.0?μM) was identified to have the most potent antitumor activities, with IC50 values of 5.472, 4.260 and 5.837?μM against H460, B16F10 and A549 cell lines, respectively. Together, our results suggest that 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives may serve as potential agents for the treatment of FGFR1-mediated cancers.  相似文献   

19.
20.
The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号