首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here, we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta‐2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin‐stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways.   相似文献   

2.
Teleost retinal pigment epithelial (RPE) cells contain pigment granules within apical projections which undergo actin‐dependent, bi‐directional motility. Dissociated RPE cells in culture attach to the substrate and extend apical projections in a radial array from the central cell body. Pigment granules within projections can be triggered to aggregate or disperse by the presence or absence of 1 mM cAMP. Aminated, fluorescent latex beads attached to the dorsal surface of apical projections and moved in the retrograde direction, towards the cell body. Bead rates on RPE cells with aggregating or fully aggregated pigment granules were 2.2 ± 0.5 and 2.6 ± 0.2 μm/min (mean ± SEM), respectively, similar to rates of aggregating (retrograde) pigment granule movement (2.0 ± 0.4 μm/min). Bead rates were slightly slower on cells with fully dispersed or dispersing pigment granules (1.5 ± 0.1 and 1.5 ± 0.4 μm/min). Movements of surface‐attached beads and aggregating pigment granules were closely correlated in the distal portions of apical projections, but were more independent of each other in proximal regions of the projections. The actin disrupting drug, cytochalasin D (CD), reversibly halted retrograde bead movements, suggesting that motility of surface‐attached particles is actin‐dependent. In contrast, the microtubule depolymerizing drug, nocodazole, had no effect on retrograde bead motility. The similar characteristics and actin‐dependence of retrograde bead movements and aggregating pigment granules suggest a correlation between these two processes.  相似文献   

3.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

4.
The bidirectional communication between integrin αvβ3 and vascular endothelial growth factor (VEGF) receptors acts to integrate and coordinate endothelial cell (EC) activity during angiogenesis. However, the molecular mechanisms involved in this signaling crosstalk are only partially revealed. We have found that protein kinase D1 (PKD1) was activated by VEGF‐A, but not by other angiogenic factors, and associated with αvβ3 integrin. Moreover, knockdown of PKD1 increased endocytosis of αvβ3 and reduced its return from endosomes to the plasma membrane leading to accumulation of the integrin in Rab5‐ and Rab4‐positive endosomes. Consistent with this, PKD1 knockdown caused defects in focal complex formation and reduced EC migration in response to VEGF‐A. Moreover, knockdown of PKD1 reduced EC motility on vitronectin, whereas migration on collagen I was not PKD1 dependent. These results suggest that PKD1‐regulated αvβ3 trafficking contributes to the angiogenesis process by integrating VEGF‐A signaling with extracellular matrix interactions.  相似文献   

5.
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1‐like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35‐dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F‐actin, both on endosomes and at the plasma membrane.   相似文献   

6.
The increasing demand for portable and wearable electronics requires lightweight, thin, and highly flexible power sources, for example, flexible zinc‐air batteries (ZABs). The so‐far reported flexible ZAB devices mostly remain bulky, with a design consisting of two relatively thick substrates (e.g., carbon cloths and/or metal foams) and a gel electrolyte‐coated separator in between. Herein, an ultrathin (≈0.2 mm) solid‐state ZAB with high flexibility and performance is introduced by directly forming self‐standing active layers on each surface of an alkaline polymer membrane through an ink‐casting/hot‐pressing approach. A Fe/N‐doped 3D carbon with hierarchic pores and an interconnected network structure is used as cathode electrocatalyst, so that the backing gas‐diffusion layer (e.g., carbon cloth) can be abandoned. What is further, a microstructure‐modulating method to significantly increase the FeN4 active sites for oxygen reduction reaction is developed, thus significantly boosting the performance of the ZAB. The assembled solid‐state ZAB manifests remarkable peak power density of 250 mW cm?3 and high capacity of 150.4 mAh cm?3 at 8.3 mA cm?3, as well as excellent flexibility. The new design should provide valuable opportunity to the portable and wearable electronics.  相似文献   

7.
Mindin (spondin‐2) is an extracellular matrix protein of unknown structure that is required for efficient T‐cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N‐terminal F‐spondin (FS) domain and C‐terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8‐Å resolution. The structure revealed an eight‐stranded antiparallel β‐sandwich motif resembling that of membrane‐targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C‐mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.  相似文献   

8.
9.
Cardiovascular diseases remain the leading causes of death worldwide. Stem cell therapy offers a promising option to regenerate injured myocardium. Among the various types of stem cells, cardiosphere cells represent a mixture of intrinsic heart stem cells and supporting cells. The safety and efficacy of cardiosphere cells have been demonstrated in recent clinical trials. Cell–matrix interaction plays an important role in mediating the engraftment of injected stem cells. Here, we studied the role of integrin β‐3 in cardiosphere‐mediated cell therapy in a mouse model of myocardial infarction. Our results indicated that inhibiting integrin β‐3 reduced attachment, retention and therapeutic benefits of human cardiospheres in mice with acute myocardial infarction. This suggests integrin β‐3 plays an important role in cardiosphere‐mediated heart regeneration.  相似文献   

10.
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer‐dependent functions of SNX1 and SNX2 have been well documented, potential retromer‐independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin‐7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin‐7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG‐dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1‐ and retromer‐independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin‐7‐mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.  相似文献   

11.
12.
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine‐glycine‐aspartate tripeptide motif)‐dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal‐derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small‐hairpin RNA) approach showed that α8β1 plays important roles in RGD‐dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho‐associated kinase)‐dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK‐dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.  相似文献   

13.
14.
Cdc31p is the yeast homologue of centrin, a highly conserved calcium-binding protein of the calmodulin superfamily. Previously centrins have been implicated only in microtubule-based processes. To elucidate the functions of yeast centrin, we carried out a two-hybrid screen for Cdc31p-interacting proteins and identified a novel essential protein kinase of 1,080 residues, Kic1p (kinase that interacts with Cdc31p). Kic1p is closely related to S. cerevisiae Ste20p and the p-21– activated kinases (PAKs) found in a wide variety of eukaryotic organisms. Cdc31p physically interacts with Kic1p by two criteria; Cdc31p coprecipitated with GST–Kic1p and it bound to GST–Kic1p in gel overlay assays. Furthermore, GST–Kic1p exhibited in vitro kinase activity that was CDC31-dependent. Although kic1 mutants were not defective for spindle pole body duplication, they exhibited a variety of mutant phenotypes demonstrating that Kic1p is required for cell integrity. We also found that cdc31 mutants, previously identified as defective for spindle pole body duplication, exhibited lysis and morphological defects. The cdc31 kic1 double mutants exhibited a drastic reduction in the range of permissive temperature, resulting in a severe lysis defect. We conclude that Kic1p function is dependent upon Cdc31p both in vivo and in vitro. We postulate that Cdc31p is required both for SPB duplication and for cell integrity/morphogenesis, and that the integrity/morphogenesis function is mediated through the Kic1p protein kinase.  相似文献   

15.
16.
17.
18.
Actin polymerizes to form part of the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hirsutum) actin gene in the organization of actin filaments in lobed cotyledon pavement cells and the highly elongated single‐celled trichomes that comprise cotton lint fibers. Using mapping‐by‐sequencing, virus‐induced gene silencing, and molecular modeling, we identified the causative mutation of the dominant dwarf Ligon lintless Li1 short fiber mutant as a single Gly65Val amino acid substitution in a polymerization domain of an actin gene, GhACT_LI1 (Gh_D04G0865). We observed altered cell morphology and disrupted organization of F‐actin in Li1 plant cells by confocal microscopy. Mutant leaf cells lacked interdigitation of lobes and F‐actin did not uniformly decorate the nuclear envelope. While wild‐type lint fiber trichome cells contained long longitudinal actin cables, the short Li1 fiber cells accumulated disoriented transverse cables. The polymerization‐defective Gly65Val allele in Li1 plants likely disrupts processive elongation of F‐actin, resulting in a disorganized cytoskeleton and reduced cell polarity, which likely accounts for the dominant gene action and diverse pleiotropic effects associated with the Li1 mutation. Lastly, we propose a model to account for these effects, and underscore the roles of actin organization in determining plant cell polarity, shape and plant growth.  相似文献   

19.
20.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号